litbaza книги онлайнМедицинаВсе дыхательные гимнастики. Для здоровья тех, кому за... - Михаил Ингерлейб

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 8 9 10 11 12 13 ... 68
Перейти на страницу:

Все дыхательные гимнастики. Для здоровья тех, кому за...

Рис. 9. Тканевое дыхание

Наибольшая концентрация углекислого газа (до 60 мм рт. ст.) отмечается в клетках в результате образования этого газа в митохондриях. В тканевой жидкости концентрация углекислого газа изменчива (в среднем 46 мм рт. ст.), а в артериальной крови составляет 40 мм рт. ст. Углекислый газ из клеток и межклеточной жидкости диффундирует по направлению снижения концентрации в кровеносные капилляры и транспортируется кровью к легким. Этот механизм мы разбирали в предыдущей главе.

Глава 5. Клеточное дыхание

Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке досталось, как при коммунизме, – не по труду, а по потребностям.

Все дыхательные гимнастики. Для здоровья тех, кому за...

Рис. 10. Митохондрия

Ни для кого не секрет, что наше тело состоит из множества живых клеток – непохожих по своему строению, но работающих с одной целью – обеспечить своим существованием жизнедеятельность цельного организма, являющегося материальной основой нашей Личности, который мы обычно называем телом. Однако, различаясь по своим функциям и строению, все клетки все же имеют общие черты – как люди, различающиеся как отдельные личности, но имеющие одинаковый набор внутренних органов (сердце, легкие, мозг и т. д.) и примерно одинаковый набор биологических потребностей (воздух, питание, тепло и т. д.). Эти закономерности в равной степени относятся как ко всему организму, так и к каждой его клетке, и в первую очередь любая клетка нашего тела нуждается в энергии. Эту энергию клетка получает путем окисления органических веществ, для процесса окисления необходим кислород – другими словами, клетка получает энергию в процессе клеточного дыхания. Но и здесь все совсем непросто.

Законы биоэнергетики

Клеточное дыхание присуще всем организмам, живущим в содержащей кислород среде. Этот процесс лежит в основе обеспечения потребностей клетки в энергии. Любая живая клетка удовлетворяет свои энергетические потребности за счет внешних ресурсов. Такими «внешними ресурсами» для клетки могут быть поступающие из внешней среды химические вещества или даже солнечный свет для растительных клеток, содержащих хлорофилл Если говорить о потребностях живой клетки, то они складываются из различных процессов, каждый из который требует энергии для своего совершения. Сами эти процессы, в свою очередь, необходимы для совершения отдельных видов полезной работы для нужд как самой клетки, так и целостного организма. Даже у простейших живых существ, каковыми являются бактерии, таких процессов насчитывается несколько десятков, и все они нуждаются в энергетическом обеспечении. Что же в таком случае говорить о высокоспециализированных клетках человеческого тела – о нервных, железистых, мышечных клетках? Их «энергетические траты» значительно выше.

...

Любая живая клетка удовлетворяет свои энергетические потребности за счет внешних ресурсов.

Трудно себе представить, что Природа, стремящаяся к максимальной целесообразности действий любого организма, заложила для каждого из этих процессов отдельный механизм обеспечения энергией. Конечно, это не так. Как верно и точно заметил действительный член РАН В.П. Скулачев, «живая клетка располагает особой «энергетической валютой», играющей роль посредника между процессами запасания энергии и ее траты».

В течение достаточно долгого времени ученые считали, что единственным видом такой «валюты» служат так называемые высокоэнергетические химические соединения, – в первую очередь, известный даже школьникам аденозинтрифосфат (АТФ). Однако современные исследования опровергли эту догму. Оказалось, что клетка располагает не одним, а тремя типами «энергетической валюты». Наряду с АТФ такую роль выполняют водородный (протонный) и натриевый потенциалы на биологических мембранах.

На основе полученных данных учеными были сформулированы три закона биоэнергетики. Кратко их суть сводится к следующим положениям:

Первый закон биоэнергетики

Живая клетка не использует внешние ресурсы для получения энергии, необходимой для обеспечения внутренних процессов, «напрямую». Клетка «конвертирует» энергию внешних ресурсов в одну из трех внутренних «энергетических валют»: АТФ, натриевый или протонный (водородный) потенциал, затем «валюта» расходуется на осуществление различных энергоемких процессов.

По еще одному меткому замечанию В.П. Скулачева, который дал подробное описание законов биоэнергетики, «клетка предпочитает денежное обращение, а не бартер». Простейшим примером запасания энергии в «конвертируемой» форме может быть гликолиз, или расщепление углеводов до молочной кислоты с получением молекулы АТФ. Если затем АТФ используется, например, для совершения механической работы (у животных для мышечного сокращения), цепь процессов завершается расщеплением АТФ до АДФ и фосфата сократительным белком мышечной клетки (актомиозином). Если источником энергии для мышечной работы служит не гликолиз, а дыхание (что энергетически более выгодно), то есть окисление кислородом питательных веществ (например, углеводов), результатом также будет получение АТФ, но путь к нему будет более сложным.

Второй закон биоэнергетики

Живая клетка в результате эволюции приобрела способность использовать как минимум две «энергетические валюты»: водорастворимую (АТФ) и связанную с мембраной – натриевый или водородный потенциал.

Старая народная мудрость «не держи все яйца в одной корзине» находит подтверждение и на клеточном уровне. Если же использовать экономические выкладки и для дальнейших объяснений физиологических процессов, можно сказать, что клетка держит часть капитала в наличных деньгах, а часть в акциях, причем в двух разных банках.

Третий закон биоэнергетики

«Энергетические валюты» клетки могут превращаться одна в другую, поэтому получения хотя бы одной из них за счет внешних ресурсов достаточно для поддержания жизнедеятельности.

Вывод простой, сформулируем его с точки зрения «экономики клетки»: не важно, в какой «валюте» поступил доход. Главное, чтобы «валюта» была конвертируемая. Очень часто живая клетка располагает несколькими источниками энергии. Так, животные клетки могут использовать для энергообеспечения как дыхание, так и гликолиз – бескислородное извлечение энергии из органических веществ. Однако, как правило, даже в самых сложных случаях, какой-то один процесс доминирует в каждый конкретный момент времени и сменяется другим при изменении условий. В наиболее эволюционно «продвинутой» животной клетке есть все три вида «энергетической валюты», это увеличивает ее способность к выживанию и выполнению функций в организме.

1 ... 5 6 7 8 9 10 11 12 13 ... 68
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?