Шрифт:
Интервал:
Закладка:
По сути, он открыл третье царство — царство микробов. Но едва ли он сам или его современники были в состоянии оценить значение этого открытия. Со времен Левенгука прошло три столетия. Но даже сейчас, после десятилетий бурного развития микробиологии, нельзя сказать, что все виды микроорганизмов уже открыты и остается лишь тщательно изучить уже известные формы. Совсем наоборот. По мере появления новых методов наблюдения и новых специализированных сред для выращивания микроорганизмов удается выделить формы, поражающие воображение даже видавших виды микробиологов.
Тут и клетки треугольной и звездчатой формы, и ползающие многоклеточные бактерии… А сообщения об открытии все новых и новых форм и видов продолжают поступать.
Теперь настало время остановиться на существе современных методов обнаружения микробов.
Устройство человеческого глаза не позволяет различать предметы, величина которых меньше одной десятой миллиметра. Микроорганизмы значительно мельче, и как бы мы ни напрягали свое зрение, нам никогда не увидеть их невооруженным глазом. Тем не менее все же существуют визуальные методы наблюдения микроорганизмов, правда, не отдельно взятых, а их скоплений. Интенсивно размножаясь и достигая больших концентраций в единице объема, микроорганизмы становятся видимыми и невооруженным глазом. Так, прозрачный бульон становится мутным, когда количество развившихся в нем клеток достигает одного-двух миллиардов в одном кубическом сантиметре. На измерении мутности основан один из методов количественной оценки микроорганизмов — нефелометрический.
Известен другой метод, применяющийся для количественного определения микроорганизмов и тоже основанный на визуальном определении не единичных клеток, а их скоплений, так называемых колоний, — метод предельных разведений. Небольшой объем исследуемой жидкости или суспензии равномерно распределяется по поверхности плотной агаризованной питательной среды. В тех местах поверхности, куда попали клетки микроорганизмов, через некоторое время образуются крупные или мелкие колонии. Обычно используют несколько различных концентраций (разведений) исследуемой жидкости, что позволяет получить достоверные данные о содержании микроорганизмов в исследуемом образце.
Возможно, конечно, и прямое микроскопирование. Однако смотровое поле микроскопа настолько мало, что для получения достоверных данных необходимо просмотреть большое число полей, что требует больших затрат квалифицированного труда. Этот процесс можно автоматизировать, используя электронно-лучевую трубку. Если электронный луч направить на смотровое поле, то, двигаясь по нему, он будет отражаться от клеток. Можно учесть число отражений и даже создать прибор, состоящий из электронно-лучевой трубки и счетчика. Однако у этой системы есть существенный недостаток: электронный луч, отражаясь одинаково от мертвой и от живой клетки, дает явно завышенную численность живых микроорганизмов. Более того, при наличии показаний в исследуемом образце в действительности может вообще не быть жизнеспособных клеток.
Наилучшие результаты, конечно, можно получить, используя совокупность методов, а также тщательно анализируя и сравнивая результаты, полученные различными способами.
Вот почему необходима разработка инструментальных методов микробиологического анализа, не только приспособленных к микроскопическим размерам исследуемых объектов, но и позволяющих отличать живые микроорганизмы от мертвых. В создании таких методов имеются значительные успехи.
Для обнаружения микроорганизмов, помимо обычных микробиологических способов, используются физические и химические. Г. Соли запатентовал в США оригинальный способ, основанный на способности живых микроорганизмов синтезировать фермент каталазу. Исследуемую жидкость вводят в раствор, содержащий перекись водорода и вещество, хемолюминесценция которого активируется перекисью водорода. Уменьшение интенсивности хемолюминесценции в растворе по сравнению с контролем показывает на присутствие в пробе живых клеток, каталаза которых разлагает перекись водорода и тем самым уменьшает интенсивность хемолюминесценции.
Другой физический метод обнаружения живых бактерий и дифференциации их от погибших микроорганизмов и инертных тел микроскопического размера разработан Дж. Воудом и М. Бенсоном. Проводящую электрическую жидкость пропускают через маленькое отверстие в диэлектрике. При этом живые бактерии вызывают мгновенные резкие изменения (скачки) сопротивления. Подсчет возникающих скачков с помощью электронно-счетного устройства и корреляция полученных данных со скоростью тока жидкости позволяют с большой точностью определить концентрацию живых бактерий в известном объеме жидкости. Современные приборы для обнаружения микроорганизмов способны найти одну клетку в 1 мл исследуемой жидкости. И это, наверное, не предел. Если с помощью микроскопа Левенгука, состоящего из одной линзы и дающего увеличение всего в 300 раз, удалось открыть целый мир бактерий, то какие же огромные возможности предоставляет пытливому исследователю микробиология XXI в., оснащенная целым арсеналом современных средств наблюдения!
Нас — тьмы, и тьмы, и тьмы.
Микроорганизмы — всюду. В воздухе, в воде, в почве — и везде их великое множество. Достаточно сказать, что только в одном кубическом сантиметре ризосферы (это часть почвы, непосредственно прилегающая к корневой системе растения) их число достигает нескольких миллионов. Но это, скажете вы, в почве, которая является уникальным аккумулятором таких жизненно важных факторов, как тепло, вода и воздух. А в других сферах? Прежде всего следует отметить, что нет такой сферы, в которой бы не были обнаружены микроорганизмы. Даже в останках палеонтологических животных (мамонта, пещерного медведя) и неандертальцев найдены ДНК микроорганизмов, которые размножались на их трупах.
В воде океанов бактерий не меньше, чем на суше: их количество в одном кубическом сантиметре достигает миллиона, а число видов доходит до 1500! Проведенное в 2006 г. в рамках проекта «Перепись морской жизни» исследование генетического материала в образцах воды из океана показало: в гидросфере Земли обитает значительно больше видов микроорганизмов, чем считалось раньше. Предполагаемое число различных видов бактерий, живущих в океане, оценивалось в 5 млн. Теперь оно оценивается в 10 млн. Они распространены во всех слоях океана, от поверхности до самого дна. Свободно плавающие виды бактерий располагаются в приповерхностной зоне. Больше всего микроорганизмов у дна, где они выполняют роль «санитаров».
С помощью специально сконструированной буровой установки жизнеспособные бактерии были обнаружены в материковых льдах Антарктиды на глубине 427 метров. В Гренландии в пробах льда, извлеченных с трехкилометровой глубины, были найдены сверх-микроскопические бактерии, возраст которых заведомо превышает сто тысячелетий.
В пробах воздуха, взятых с помощью ракет вертикального взлета, на высоте в 74 километра были обнаружены четыре вида грибков и два вида бактерий.