Шрифт:
Интервал:
Закладка:
* * *
Иногда с темным веществом возникают проблемы, потому что его оказывается слишком много. Вспомним, что шаровые скопления — это относительно небольшие сферические скопления звезд, обращающиеся вокруг нашей Галактики и многих других галактик. Темное вещество взаимодействует только посредством гравитации и, соответственно, не может испускать электромагнитное излучение. Поэтому оно не в состоянии избавляться от тепла, что совершенно необходимо при сжатии под действием гравитации, и, следовательно, не может образовывать такие маленькие сгустки, как шаровые скопления. Следовательно, шаровые скопления не могут содержать много темного вещества. Однако Скарпа считает, что звезды ω Центавра — крупнейшего шарового скопления нашей Галактики — движутся слишком быстро, чтобы это можно было объяснить влиянием видимого вещества. А поскольку темного вещества там быть не должно, то получается, что за аномалию в принципе может отвечать что-то другое, быть может, даже другой закон тяготения.
Несмотря на большие затраты изобретательности, времени, энергии и денег на бесплодные до сих пор поиски частиц темного вещества, большинство астрономов (и в особенности космологов) считают существование темного вещества практически установленным фактом. На самом же деле эта загадочная субстанция выполняет свою задачу не так хорошо, как обычно утверждается. Сферическое гало из темного вещества — стандартное допущение — не делает объяснение галактической кривой вращения достаточно убедительным. Другие варианты распределения темного вещества работали бы лучше, но тогда вам пришлось бы объяснять, почему вещество, способное взаимодействовать только посредством гравитации, должно быть распределено таким образом. Сложности такого рода, как правило, замалчиваются, а сомнения в существовании темного вещества воспринимаются как своего рода ересь.
Следует признать, что логический вывод о существовании невидимого вещества на основе наблюдаемых аномалий в орбитах звезд или планет — это метод с давней и в основном вполне достойной историей. Он позволил успешно предсказать существование Нептуна. Он удачно сработал с Плутоном, хотя здесь расчеты основывались на предположениях, которые позже оказались ошибочными, но тем не менее объект был обнаружен вблизи предсказанного положения. Он позволил найти у планет-гигантов несколько небольших лун. А еще он подтвердил теорию относительности, объяснив с ее помощью аномалии в прецессии перигелия Меркурия. Более того, многие экзопланеты были открыты именно так: вывод об их существовании сделан на основе того, как под их влиянием колеблется материнская звезда.
С другой стороны, по крайней мере в одном случае этот метод дал куда менее достойный результат: Вулкан. Как мы видели в главе 4, предсказание этого несуществующего мира, будто бы обращающегося вокруг Солнца внутри орбиты Венеры, было попыткой объяснить прецессию перигелия Меркурия, приписав аномалии возмущающему влиянию некоей необнаруженной пока планеты.
В свете этих прецедентов основной вопрос стоит так: темное вещество — это Нептун или Вулкан? Подавляющее астрономическое большинство убеждено, что это Нептун. Но если так, то это Нептун, которому на данный момент недостает одного — самого Нептуна. В противовес ортодоксальному мнению мы должны указать растущее, особенно среди части физиков и математиков, убеждение в том, что это все же Вулкан.
* * *
Поскольку темное вещество проявляет, похоже, феноменальную скромность всякий раз, когда кто-то его всерьез ищет, нам следует рассмотреть также возможность того, что его вовсе нет в природе. Гравитационные эффекты, которые заставили космологов постулировать его существование, представляются бесспорными, так что нам, вероятно, следует поискать для них какое-то другое объяснение. Мы могли бы, к примеру, пойти по стопам Эйнштейна и заняться поисками нового закона гравитации. У него же получилось!
В 1983 году Мордехай Мильгром представил свою модифицированную ньютоновскую динамику (MOND). В Ньютоновой механике ускорение тела в точности пропорционально приложенной силе. Мильгром предположил, что при очень малых ускорениях это соотношение, возможно, нарушается[99]. В контексте кривых вращения это предположение можно интерпретировать также как небольшое изменение Ньютонова закона тяготения. Следствия из этой гипотезы были проработаны достаточно подробно, при этом различные возражения удалось отвести. MOND часто критиковали за то, что она не является релятивистской, но в 2004 году Яаков Бекенштейн сформулировал релятивистское обобщение, TeVeS (тензор — вектор — скалярная гравитация). Вообще неразумно критиковать новое предложение за то, что в нем будто бы чего-то не хватает, если сам не попытался это что-то найти.
Галактические кривые вращения не единственная гравитационная аномалия, обнаруженная астрономами. В частности, в некоторых скоплениях галактики, судя по всему, связаны между собой сильнее, чем может объяснить гравитационное поле видимого вещества. Самый яркий пример такой аномалии (по мнению сторонников темного вещества) имеет место в скоплении Пуля, где происходит столкновение двух галактических скоплений. Центр масс каждого из скоплений смещен по отношению к тому месту, которое можно найти по наиболее плотным областям нормального вещества, и считается, что расхождение не согласуется ни с одним нынешним предложением по модификации Ньютоновой гравитации. Однако это не конец истории, поскольку в 2010 году результаты нового исследования показали, что эти наблюдения не согласуются и с темным веществом в том виде, в каком оно фигурирует в Стандартной космологической модели ΛCDM. А Мильгром по-прежнему утверждает, что MOND способна объяснить наблюдения в скоплении Пуля. Долго считалось, что MOND не объясняет полностью динамику скоплений галактик, но она способна разобраться примерно с половиной расхождения, за которое в альтернативной модели отвечает темное вещество. За вторую половину, считает Мильгром, отвечает недоступное прямому наблюдению обычное вещество.
Это более вероятно, чем склонны признавать энтузиасты темного вещества. В 2011 году Изабель Гренье заинтересовалась тем, что космологические расчеты суммарного количества вещества не сходятся. Даже если забыть про темное вещество и темную энергию, не хватает примерно половины обычного (специальный термин: барионного) вещества. И ее группа нашла, что большое количество этого вещества может находиться в форме областей водорода, настолько холодного, что он не производит никакого излучения, которое мы могли бы регистрировать с Земли. Данные об этом получены из наблюдений излучения, которое рождают молекулы окиси углерода[100], связанные с космическими пылевыми облаками в пространстве между звездами. А где окись углерода, там обычно и водород, но он настолько холодный, что доступна наблюдениям только окись углерода. Расчеты позволяют предположить, что от внимания ученых таким образом ускользает громадное количество водорода.