Шрифт:
Интервал:
Закладка:
Изменим уравнение 2.8 для нахождения sin r. Получим:
sin r = sin i/n. (Уравнение 2.9)
Если угол падения равен 0°, то синус i равен 0, а синус r равен 0/n, то есть 0. Угол падения может возрасти до 90°, в таком случае луч света перепендикулярен нормали и просто скользит вдоль поверхности. Если угол падения принимает свое максимальное значение 90°, то sin i равен 1, а значение sin r — 1/n. Другими словами, по мере того как i изменяется от 0° до 90° (это его крайние значения), sin r изменяется от 0 до 1/n (это его крайние значения). В случае с водой, где n равняется 1,33, sin r может изменяться от 0 до 0,75.
Если синус угла равен 0, то этот угол — 0°, а если этот синус равен 0,75, то (если верить таблице синусов) такой угол равен 48,6°. Следовательно, поскольку угол падения света, проходящего из воздуха в воду, может изменяться от 0° до 90°, угол преломления изменяется от 0° до 48,6°. Больше 48,6° этот угол быть не может независимо от того, каков угол падения.
А если, наоборот, представить, что свет падает из воды на воздух? Отношение между углами сменилось на противоположное. Теперь свет преломляется по направлению от нормали. Поскольку свет (при попадании из воды в воздух) создает угол падения, изменяющийся от 0° до 48,6°, то угол отражения (получающийся при попадании света в воздух) изменяется от 0° до 90°. Однако ныряльщик с фонариком может направить луч света таким образом, что тот (под водой) создаст угол к нормали более 48,6°. Он должен выйти под углом более 90°, а это означает, что он вообще не выйдет, поскольку угол более 90° к нормали завернет луч обратно в воду. Другими словами, если луч, выходя из воды в воздух, приходит к водной поверхности под углом большим, чем критический (48,6°), он будет полностью отражен. Это явление так и называется — полное отражение.
Из уравнения 2.9 мы видим, что чем больше коэффициент преломления вещества (n), тем меньше критический угол. Для обычного стекла критический угол составляет около 42°, а для алмаза — 24,5°. Свет может проходить сквозь прозрачные пластиковые трубы, обходя закругления и углы, если лучи с источника света, светящего с одного конца, всегда падают на границу пластика с воздухом с углом больше критического для этого пластика.
Коэффициент преломления самого воздуха, будучи очень маленьким, может творить замечательные вещи, когда речь заходит о больших его толщах. Если прямо наверху над вами находится большое тело, его свет проходит из космического вакуума в газ нашей атмосферы под углом падения 0° и преломления не происходит. Предмет же, находящийся не прямо над нами, излучает свет с углом преломления больше 0°, и этот свет несколько преломлен по направлению к нормали. Соответственно наш глаз, не делая поправки на искривление, видит такой предмет несколько выше в небе, чем он на самом деле находится.
Чем ниже в небе находится источник света, тем больше угол падения и тем больше его разница с углом преломления. Тем больше соответственно и разница между его видимым и реальным положением. Если предмет находится на горизонте, глаз видит его выше, чем он действительно есть, более чем на диаметр солнца. Следовательно, когда солнце на самом деле уже ушло за горизонт, атмосферное преломление позволяет нам видеть его на горизонте. Более того, нижний край солнца подвергается наиболее сильному преломлению и зрительно поднимается больше. В результате закатное солнце кажется овальным и сплюснутым снизу.
Искривление через преломление луча, попадающего в нашу атмосферу из космоса, происходит не резко. Плотность воздуха не одинакова, она возрастает по мере приближения к поверхности Земли. Коэффициент его преломления возрастает вместе с плотностью. Следовательно, по мере прохождения света из космоса к нашим глазам он все более и более искривляется, следуя по кривой линии (а не по прямой, как мы считали).
Коэффициент преломления воздуха колеблется и в зависимости от температуры, и, когда слой воздуха, находящийся у земли, нагревается и накрывается слоем более холодного воздуха, свет искривится таким образом, что далекие предметы станут видимыми. Температурные условия воздуха могут привести к тому, что предметы, находящиеся на земле, будут видны вверх ногами в воздухе. Так возникают миражи (чаще всего в пустынях, где разница температур между слоями воздуха бывает больше, чем где-либо), которые морочили своим жертвам головы на всем протяжении человеческой истории. В наше время такие случаи попадают в заголовки газет, когда, например, человек принимает свет фар далекого автомобиля, летящий к нему по долгому искривленному пути, за мчащуюся по небу «летающую тарелку».
Когда две стороны стекла не параллельны, нормаль к одной стороне не будет параллельна нормали к другой. В таких условиях преломление на дальней стороне не будет соответствовать преломлению, получаемому на ближней, и луч света, проходящий сквозь стекло, не будет выходить и!» него в том же направлении, что и входил. В частности, так случается, когда свет проходит через стеклянный треугольник или призму[82].
Представьте себе, что вы наблюдаете, как луч света, переходя из воздуха в стекло, попадает на грань такой призмы, расположенной острым концом вверх. Если луч света подходит к нормали под углом снизу, он проходит в стекло выше нормали, но под меньшим углом к ней, потому что оптическая плотность стекла выше, чем воздуха. Когда луч света проходит призму насквозь и достигает противоположной грани, у него образуется угол с новой нормалью, выходящей из той же точки, и к этой нормали он подходит уже под углом сверху. К тому же, попадая в воздух, он должен отклониться дальше от этой новой нормали, потому что оптическая плотность воздуха меньше, чем стекла.
В результате воздух преломляется дважды в одном и том же направлении: первый раз — когда попадает из воздуха в стекло и второй раз — когда переходит из стекла в воздух.
Возвращаясь из стекла в воздух, он движется в направлении, отличном от того, в котором двигался до попадания в призму. Свет всегда проходит сквозь призму, отклоняясь от вершины в направлении к основанию.
Предположим, что две призмы соединены у нас основанием к основанию и параллельный пучок света попадает в эту призму параллельно плоскости их оснований. Верхняя половина пучка, попадая в верхнюю призму, будет преломлена вниз, к основанию верхней призмы, нижняя, попадая в нижнюю призму, — вверх, к основанию нижней. Две половины пучка света, входя в призму параллельными, сойдутся и пересекутся с другой ее стороны.
Сечение двойной призмы имеет две прямые линии с одной стороны и две — с другой, соответственно целиком является параллелограммом (как знак, нарисованный в середине туза бубен). В такой сдвоенной призме нормали ко всем точкам на верхней половине параллельны, потому что поверхность ровная. Следовательно, все лучи в световом пучке, который на нее падает, имеют одинаковые углы к нормали и преломляются под одним и тем же углом. То же самое верно и по отношению к нижней части двойной призмы, только в этом случае лучи преломляются вверх, а не вниз. Две половины пучка выходят с другой стороны сдвоенной призмы в виде снопов параллельных лучей света и пересекаются друг с другом по широкому фронту.