litbaza книги онлайнИсторическая прозаКосмическая битва империй. От Пенемюнде до Плесецка - Святослав Славин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 90 91 92 93 94 95 96 97 98 ... 117
Перейти на страницу:

Сама схема строительства на сегодняшний день выглядит так. Сначала на геостационарную орбиту обычными ракетами будет доставлено около 40 т ленты шириной от 5 до 11,5 см в ширину и толщиной в микроны. Когда она будет развёрнута на всю длину и достигнет поверхности Земли, то сможет удерживать полезные грузы весом до 495 кг.

Далее специальные подъёмники будут подниматься по первоначальной ленте и постепенно расширять её. На каждое восхождение уйдёт от 3 до 4 дней. Через 2,5 года лента будет готова полностью.

Конструкция подъёмника как бы охватывает ленту с двух сторон. Кабину планируется оснастить двумя комплектами роликов или гусениц. Лента будет проходить между ними, обеспечивая плавный подъём или спуск кабины за счёт трения.

Для движения подъёмника по ленте вверх или вниз предполагается использовать электрические двигатели. Энергия будет передаваться с Земли с помощью лазера или микроволнового излучения. Посланный им луч преобразуется в электричество, которое приведёт в действие моторы лифта. Скорость движения кабины составит 200 километров в час.

Все этапы научно-исследовательских работ, проектирования и строительства чётко расписаны. Так, при соответствующем финансировании уже через два года могут быть получены первые образцы сверхпрочной ленты. Её испытания, соответствующие доработки, развёртывание массового производства займут ещё около 3 лет. Строительство отнимет примерно шесть лет. Наконец, ещё 2,5 года уйдёт на расширение ленты длиной в 100000 км. Таким образом, первая сравнительно небольшая гондола с полезным грузом 5 т могла бы подняться в космос где-то в 2017–2020 годах.

Так полагает доктор Эдвардс. Однако многие эксперты не разделяют его оптимизма. Прежде всего непонятно, удастся ли найти в нынешнем мире столь много свободных финансов. Ведь только на сооружение первого лифта требуется около 10 млрд. долларов. А вся программа стоит как минимум вчетверо дороже.

Кроме того, не решены многие принципиальные вопросы. Например, как защитить транспортную ленту от метеоритов и тех обломков, которые в изобилии ныне болтаются на околоземной орбите? Если покрыть её синтетическим материалом или тонкой металлической бронёй, то сразу же её вес многократно увеличится.

Ещё одна трудность — мощные порывы ветра. Метровая по ширине лента имеет высокую парусность. А гарантировать, что в данном районе океана сильных ветров не будет, невозможно. Придётся также подумать и о защите всего сооружения от ударов молний, океанских штормов и т.д.

Наконец, подобное сооружение — лакомый кусок для террористов. Представьте себе, каков будет резонанс, если в океан ухнет кабина космического лифта…

Тем не менее даже скептики признают чрезвычайную перспективность использования тросовых транспортных систем в космонавтике в будущем. Спор идёт лишь о сроках. Так, представитель НАСА Роберт Казанова полагает, что первый космический лифт может появиться лет через 50.

Примерно такие же сроки называет и доктор технических наук, лауреат Государственной премии Георгий Успенский, возглавляющий отделение в Центральном НИИ машиностроения Росавиакосмоса. Он ещё в 1989 году опубликовал подобные же расчёты по перспективным космическим транспортным системам.

Ну а дальше вполне возможно продление этой трассы до Луны. Освоение же Луны, строительство на ней ракетодрома откроет возможность путешествий к дальним окраинам Солнечной системы или даже в иные звёздные системы.

«ВАВИЛОНСКИЕ БАШНИ» XXI ВЕКА. Впрочем, постройка космического лифта — не единственный способ создать более дешёвый способ транспортировки людей и грузов в космос.

По словам эксперта центра НАСА в Кливленде Джеффри Лендиса, традиционный способ доставки грузов с помощью ракет себя уже исчерпал. Пытаясь модернизировать его, специалисты предлагают запускать ракеты не с Земли, а, например, с борта самолёта-носителя, который поднимается на высоту 10–12 км. Таким образом удастся сэкономить по крайней мере одну ступень.

Впрочем, нынешние самолёты позволяют поднять сравнительно небольшие, лёгкие носители, которые, в свою очередь, способны транспортировать на орбиту сравнительно компактные и немассивные грузы. Для выведения на орбиту крупных спутников и модулей орбитальных станций Дж. Лендис и его коллеги предлагают модернизировать… сам космодром.

«Надо оснастить стартовую площадку высокой башней, а ещё лучше — одновременно перенести её на какую-нибудь высокую гору, — говорит Лендис. — Наши расчёты показывают, что старт ракеты с высоты в 15 км позволяет увеличить полезную нагрузку в 1,5 раза, а с 20 км — вдвое…»

Эксперты НАСА полагают, что современные композитные материалы на основе углерода позволят в скором будущем соорудить «Вавилонскую башню» высотой в 25 км. С её вершины полезную нагрузку можно было бы выводить в космос с помощью всего одноступенчатой ракеты, а не трёхступенчатой, как ныне. И если ныне полезная нагрузка составляет примерно 2 процента от стартовой массы всего носителя, то с помощью высотных запусков этот показатель удастся существенно повысить.

Строительство же подобного сооружения в денежном эквиваленте обойдётся примерно во столько же, как и возведение обычного небоскрёба где-нибудь на Манхэттене.

Интересно, что подобную же идею изобретатель из Самары, уже знакомый нам специалист по ракетно-космической техники В.Н. Пикуль предложил ещё в конце 90-х годов прошлого века.

«Особенность моего способа состоит в медленном разгоне особой платформы с ракетой на борту по ширококолейному железнодорожному спуску (точнее, в данном случае — подъёму), — рассказывал он. — По мере возрастания скорости подъём становится всё круче, и наконец ракета стартует практически вертикально, используя мощь собственных двигателей».

В свою очередь, Пикуль опирался на идею К.Э. Циолковского, красочно описанную Александром Беляевым в научно-фантастической повести «Звезда КЭЦ».

Причём строить подобные космодромы оба исследователя предлагают где-нибудь в гористых, малонаселённых местах. Горы, как уже говорилось, дают природный выигрыш в высоте — ведь вершины некоторых пиков находятся на высоте 8 км над уровнем моря.

Кстати, подобная башня может стать основанием и для космического лифта, о котором уже говорилось выше.

ГЛАВА 6. ЕЩЁ О «ЗВЁЗДНЫХ ВОЙНАХ»

Последнее время о них, к счастью, вспоминают всё меньше. А ведь были времена, когда казалось, что военные действия в космосе начнутся не сегодня, так завтра. Насколько на самом деле была вероятна третья мировая война в космосе? Каковы на самом деле были цели программы СОИ? Могут ли земляне извлечь хоть какую-то пользу из космических вооружений?

Давайте и поговорим об этом в заключительной главе нашей книги.

ПРОТИВОСТОЯНИЕ «ЧЕЛНОКОВ»

АВТО НА ОДНУ ПОЕЗДКУ? В начале 70-х годов XX века, когда начинались работы по созданию многоразовых транспортных космических кораблей (МТКК), необходимость в них обычно мотивировалась так.

1 ... 90 91 92 93 94 95 96 97 98 ... 117
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?