Шрифт:
Интервал:
Закладка:
Когда я приступил к интервьюированию людей относительно того, как они нашли свое нынешнее место работы, я, конечно же, понимал, что зачастую люди находят работу посредством своих личных контактов, и мне было интересно, кем именно являются эти личные знакомые, каковы пути продвижения информации и почему она движется именно такими путями, а не какими-то другими. Зачастую я спрашивал у этих людей: «Вы получили эту информацию от кого-то из своих приятелей?», а они каждый раз поправляли меня: «Нет-нет, это был один из моих знакомых». Спустя какое-то время, после того как я из раза в раз слышал такой ответ, я понял, что здесь присутствует какая-то закономерность. Короче говоря, фундаментальная идея заключается в том, что ваши близкие друзья хороши в очень многих отношениях – они готовы помочь вам, утешить вас в несчастье, оказать вам те или иные услуги, которые вряд ли оказали бы вам другие люди, – но они не очень-то хороши как источники полезной информации, поскольку ваши близкие друзья, как правило, общаются с теми же людми, что и вы сами. Тогда как люди, являющиеся просто вашими знакомыми – которые вряд ли помогут вам в беде, – тем не менее являются более ценными источниками информации, поскольку они знают многих из тех, кого не знаете вы. Образно выражаясь, такие люди – ваше окно в мир, поскольку они связаны с кругами, на которые у вас нет непосредственного выхода.
В частности, Марк Грановеттер обнаружил, что из 56 % тех, кто нашел работу посредством личных контактов, лишь 17 % считали такой контакт «частым» (иными словами, считали такого человека своим приятелем), тогда как 55 % считали такой контакт «эпизодическим», а 28 % считали такой контакт «редким». Чтобы описать жизненно важную функцию таких отношений за пределами обычного круга общения человека, Грановеттер даже придумал запоминающуюся фразу: его статья на эту тему, получившая впоследствии широкую известность, называется «Сила слабых связей».
Пока мы с Дунканом исследовали сети тесного мира, их преимущества и возможные применения, другая группа ученых, независимо от нас, размышляла над такими же вопросами.
В университете Нотр-Дам Ласло Барабаши и его студенты Река Альберт и Хавонг-Ционг исследовали анатомию «всемирной паутины»[254], пытаясь выявить регулярности в этой чащобе из миллиарда страниц, соединенных гиперссылками. То, что им удалось выявить, оказалось еще одним организующим принципом для широкого класса природных и рукотворных сетей. Ласло Барабаши – энергичный молодой физик с очаровательным трансильванским акцентом и умением ставить правильные вопросы. Будучи по своему формальному образованию специалистом по статистической механике (отрасль физики, которая изучает огромные системы атомов и другие совокупности частиц), он использовал оригинальный инструментарий для решения задачи, не относящейся к сфере интересов традиционной физики. Вместе со своей группой исследователей он показал, что «всемирная паутина» – это не только тесный мир, но и яркая иллюстрация особой картины в его анатомии. Некоторые страницы обладают гораздо большей совокупностью связей, чем другие: количество входящих и исходящих связей у таких страниц оказывается гораздо большим, чем в среднем по сети. Этот вывод не был слишком уж неожиданным: на краях спектра любой популяции всегда можно встретить экстремальные объекты. Неожиданной оказалась форма распределения. Это не была хорошо знакомая нам колоколообразная кривая, наподобие распределения роста людей. Она была в большей степени похожа на распределение доходов, с чрезвычайно длинным «хвостом», тянущимся вправо. (Что означает эта необычная структура, подробно рассматривается в недавно опубликованной книге Барабаши, которая называется Linked.)
В распределениях, которые изучались в традиционных курсах статистики, среднее значение задает характерный масштаб, типичный размер для членов соответствующей популяции в целом. Рассмотрим, например, распределение роста людей. Рост почти всех взрослых людей находится в диапазоне от двух до девяти футов. Вы никогда не встретите взрослого человека, рост которого равнялся бы одному дюйму или ста футам. Характерный масштаб роста людей составляет примерно пять футов и, несомненно, не отклоняется от этого значения более чем на порядок величины (коэффициент «десять») по обе стороны от среднего значения. Напротив, распределение доходов охватывает много порядков величины, начиная с годового дохода, близкого к нулю, вплоть до миллиардов долларов, которые Билл Гейтс получает лишь в виде процентов. Такое распределение иногда называют «безмасштабным», подчеркивая тем самым, что в нем не доминирует какой-то один, репрезентативный масштаб.
Барабаши и его коллеги выяснили, что распределение ссылок во «всемирной паутине» является безмасштабным, причем по той же причине, что и в случае распределения доходов, и характеризуется чрезвычайно длинным «хвостом». В частности, этот «хвост» затухает гораздо медленнее, чем в случае обычной колоколообразной кривой. Вместо того чтобы это затухание происходило, как обычно, по экспоненциальному закону, оно подчиняется «степенному» закону[255], причем показатель степени равняется 2,2. В алгебраическом смысле этот закон утверждает, что десятикратное снижение количества входящих ссылок сопровождается увеличением количества страниц, имеющих такое количество ссылок, в среднем в 102,2 раза, что равняется приблизительно 158. Иными словами, вероятность появления страниц, количество ссылок у которых в 10 раз больше, будет в 158 раз меньшей.
Эта загадочная картина наблюдается во всей «всемирной паутине», начиная со сравнительно небольшого числа гигантских хабов, наподобие CNN и Yahoo, каждый из которых содержит тысячи входящих ссылок, до сотен миллиардов почти никому не известных страниц, у которых входящих ссылок нет вообще. С чисто математической точки зрения, степенной закон ничего особенного не означает – это лишь один из множества возможных видов алгебраических соотношений. Но когда со степенным законом сталкивается физик, у него сразу же загорается взор. Поскольку, с точки зрения физика, степенной закон означает, что, возможно, речь идет о самоорганизующейся системе. Степенной закон действует в фазовых переходах, когда система находится на грани, балансируя между порядком и хаосом. Степенной закон действует во фракталах, когда произвольно малый фрагмент некой сложной формы представляет собой микрокосм целого. Степенной закон действует в статистике опасных природных явлений – лавин и землетрясений, наводнений и лесных пожаров, – масштабы которых колеблются в столь широких пределах от одного случая к другому, что среднее значение оказывается не в состоянии охарактеризовать соответствующее распределение в целом. Но несмотря на то что степенной закон активно изучается на протяжении последних 20 лет, причины его появления все еще остаются не вполне понятными для нас[256].