litbaza книги онлайнДомашняяСтрах физики. Сферический конь в вакууме - Лоуренс Краусс

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 9 10 11 12 13 14 ... 59
Перейти на страницу:

На мой взгляд, это признак глубоких проблем в нашей национальной системе образования. И дело даже не в том, что, живя рядом с Нью-Йорком, люди не отдают себе отчета в том, что население всей Америки не может быть меньше населения одного Нью-Йорка. И даже не в непонимании того, что страна с населением 1 миллион человек будет радикально отличаться от страны с населением 100 миллионов. Главная проблема в том, что для большинства из этих студентов такие числа, как 1 миллион или 100 миллионов не имели никакого объективного смысла. Они никогда не пытались сопоставить, например, миллион чашек кофе с количеством людей, которые их выпивают утром в миллионном городе. Многие не могли назвать мне даже приблизительно расстояние от восточного до западного побережья Соединенных Штатов — они не умели заставить свой мозг сделать простейшую прикидку: умножить расстояние, которое они проезжают за день на автомобиле (около 800 километров) на число дней (5-6 дней), которое необходимо, чтобы пересечь Американский континент, и понять, что это расстояние ближе к 4000-5000 километрам, нежели к 10 000 или к 20 000.

Размышления о числах в терминах того, что эти числа представляют, — самое захватывающее из всех занятий. Именно на этом специализируются физики. Я не возьмусь утверждать, что математические размышления доставляют чувство какого-нибудь особенного комфорта или являются магическим лекарством от математического бессилия, но играть с числами, выясняя, откуда то или иное число появилось в нашем мире и что за ним стоит, достаточно интересно, очень полезно и совсем не сложно. По крайней мере, необходимо научиться оценивать порядок физических величин, а это уже позволит делать важные выводы, не проводя точного количественного анализа. В этой главе я нарушу максиму Стивена Хокинга, очень надеясь, что не разорю своего издателя, и покажу, как физики манипулируют числами, чтобы сделать задачу более понятной, почему они делают это именно так, а не иначе, и что они ожидают получить от этого занятия. Основную идею можно сформулировать так: «мы используем числа, чтобы сделать вещи не сложнее, чем они должны быть».

Прежде всего следует отметить, что физические явления охватывают чрезвычайно широкий спектр возможных числовых значений и очень большие или очень маленькие числа могут появляться при решении даже простейших задач. Самое трудное при работе с такими числами — это подтвердит любой, кто хотя бы раз пытался перемножить столбиком два восьмизначных числа, — не запутаться в количестве цифр. К сожалению, часто самые трудные вещи являются одновременно и самыми важными, поскольку количество цифр определяет порядок числа. Допустим, мы умножаем 40 на 40. Какой ответ будет ближе к правильному: 160 или 2000? Ни одно из этих чисел не является точным значением произведения, но второе гораздо ближе к правильному ответу 1600. Если бы работодатель, пообещав платить вам по 40 долларов в час, заплатил за 40 часов работы только 160 долларов, тот факт, что он потерял всего лишь один нолик, был бы для вас слабым утешением, не правда ли?

Чтобы избежать подобных ошибок, физики придумали разделять числа на две части, одна из которых сообщает вам порядок числа, а вторая — точное значение в пределах этого порядка. Такая запись числа называется экспоненциальной. Она позволяет избежать записи огромного количества нулей, когда необходимо выразить в привычных нам единицах такие значения, как, например, размер наблюдаемой части Вселенной, составляющий около 1 000 000 000 000 000 000 000 000 000 сантиметров.

Глядя на это число, любой скажет, что оно очень велико, но насколько велико?

В экспоненциальной нотации используются степени числа 10. Запись 10n означает число, начинающееся с единицы, за которой следуют n нулей. Например, число 100 в экспоненциальной нотации записывается как 102, а запись 106 представляет число, начинающееся с единицы, за которой следуют шесть нулей, то есть один миллион. Оценивая величину таких чисел, достаточно помнить, что, скажем, число 106 содержит в своей записи на один ноль больше, чем число 105, и, следовательно, оно больше него в 10 раз. Для очень маленьких чисел, таких как размер атома, выраженный в сантиметрах — около 0,000000001 см, — ученые используют отрицательные показатели степени. Запись 10-n означает единицу, деленную на 10n, то есть число типа 0,000… 0001, где единица стоит на n-й позиции после запятой. Таким образом, одна десятая будет записана как 10-1, а одна миллиардная — как 10-9.

Любое произвольное числовое значение может быть записано как число в диапазоне от 1 до 10, умноженное на десять в какой-то степени. Число 100 записывается как 102, в то время как число 135 можно представить в виде произведения 1,35∙100 и в экспоненциальной нотации записать как 1,35∙102. Второй сомножитель в этой записи называется порядком числа, он дает нам представление о количестве цифр в обычной записи. Таким образом, числа 100 и 135 имеют один и тот же порядок. Первый сомножитель называется мантиссой — он говорит нам о том, где именно находится число в пределах указанного порядка, то есть является оно, например, числом 100 или числом 135.

Для физика порядок числа является наиболее важной характеристикой, поскольку он показывает масштаб явления, и экспоненциальная запись в этом отношении очень удобна, не говоря уже о том, что она просто короче. Гораздо легче воспринять число в форме 1,45962∙1013, чем 1 459 620 000 000 или «один триллион четыреста пятьдесят девять миллиардов шестьсот двадцать миллионов». Я рискну сделать еще более сильное утверждение: числа, представляющие физический мир, имеют смысл только тогда, когда они записаны в экспоненциальной форме.

Есть и другие несомненные преимущества экспоненциальной записи. В частности, она сильно упрощает манипуляции с числами. Например, вы хотите перемножить два числа, скажем, 100 и 100. Традиционная запись выглядит так: 100x100 = 10 000. В экспоненциальной форме нахождение произведения 100х100 сведется к следующей манипуляции: 102х102 = 10(2+2) = 104 — фактически, мы заменяем умножение сложением. Аналогично и с операцией деления — вместо 1000:100 = 10 мы пишем: 103:102 = 10(3-2)= 101. Деление заменяется вычитанием. Эти простые правила оперирования со степенями десяти избавляют нас от необходимости постоянно считать количество знаков в перемножаемых числах, и единственное, для чего вам может понадобиться калькулятор, это для перемножения мантисс, то есть левых частей в экспоненциальной записи. Но поскольку мантиссы находятся в диапазоне от 1 до 10, то, помня таблицу умножения 10x10, вы всегда сможете сделать грубую прикидку результата в уме.

В мои задачи не входит научить вас искусству устного счета, вместо этого я расскажу, как производить численные оценки. Если упрощение картины мира предполагает приближенное ее описание, то экспоненциальная форма представления чисел лучше всего подходит для приблизительной оценки каких-то величин с точностью до порядка. Она позволяет быстро получить ответы на вопросы, которые при другом подходе были бы практически неразрешимыми. Грубые оценки помогают убедиться, что мы находимся на правильном пути. Они также позволяют сберечь время и силы, оберегая нас от выполнения ненужной работы. Одна известная байка рассказывает о некоем аспиранте, который потратил массу усилий, чтобы решить сложную систему уравнений, описывающую эволюцию Вселенной, чтобы получить в итоге один важный параметр. И на защите диссертации выяснилось, что этот же параметр получается за пару минут из общих соображений путем простой оценки.

1 ... 6 7 8 9 10 11 12 13 14 ... 59
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?