Шрифт:
Интервал:
Закладка:
Эта модель коллапса ядра и последующего взрыва звезды была построена в течение десятилетий кропотливой работы физиков и математиков, после того как Чандрасекар в 1939 году впервые предположил возможность подобного катастрофического сценария. И все это не более чем развитие простой идеи гидростатического равновесия, которое, как мы считаем, определяет структуру Солнца. Еще без малого пятьдесят лет после работ Чаидрасекара описания процессов, приводящих к взрыву сверхновой, оставались чистой воды теоретическими спекуляциями. Даже когда астрономы научились наблюдать вспышки сверхновых в других галактиках, все их наблюдения сводились только к изучению видимого оптического излучения сбрасываемой оболочки и не позволяли непосредственно увидеть то, что происходит внутри звезды.
Все изменилось 23 февраля 1987 года. В этот день взорвалась сверхновая в Большом Магеллановом Облаке — карликовой галактике, являющейся спутником нашей звездной системы, находящейся от нас на расстоянии около 150 000 световых лет. Это была самая близкая к нам сверхновая, вспыхнувшая за последние четыре столетия. Впервые было экспериментально подтверждено, что оптический фейерверк — это лишь верхушка айсберга. Энергия в тысячи раз большая, чем наблюдается в оптическом диапазоне, уносится — возможно, вы уже догадались — почти неуловимыми нейтрино. Я говорю «почти», поскольку, несмотря на то что нейтрино свободно пролетают через толщу Земли, все же очень редко они взаимодействуют с веществом и попадаются в наши детекторы.
Можно подсчитать, что плотность потока нейтрино от взрыва далекой сверхновой такова, что каждый миллионный житель Земли, если бы в нужное время сидел в абсолютной темноте, увидел бы вспышку света, возникшую из-за того, что нейтрино провзаимодействовал с одним из атомов в его глазу.
К счастью, нам нет нужды зависеть от случайных свидетелей вспышек в их глазах. У нас есть два гигантских технических нейтринных глаза — два крупных детектора, каждый из которых содержит более 1000 тонн воды, расположенных глубоко под землей на противоположных сторонах земного шара. В каждом из резервуаров этих детекторов в кромешной темноте за объемом воды наблюдают тысячи чувствительных фотодатчиков, и вот 23 февраля, в течение 10 секунд в обоих детекторах синхронно были зафиксированы 19 нейтринных событий. Вам это может показаться мелочью, но это именно то количество нейтринных событий, которые, согласно предсказаниям теоретиков, должны были бы зафиксировать детекторы при вспышке сверхновой на другой стороне нашей Галактики. Кроме того, время прилета этих нейтрино и их энергия оказались в прекрасном согласии с теорией.
Всякий раз, когда я думаю об этом, я не перестаю удивляться. Эти нейтрино были рождены непосредственно в сверхплотных недрах коллапсирующего ядра звезды. Они несут нам прямую информацию об этих решающих секундах, в течение которых происходит коллапс. И они говорят нам, что теория, описывающая гравитационный коллапс, построенная задолго до получения первых эмпирических подтверждений, базирующаяся на все том же гидростатическом равновесии, которое отвечает за внутреннее устройство Солнца, полностью согласуется с новейшими наблюдательными данными о взрывах сверхновых. Уверенность в нашей простой модели позволила нам понять, как происходит один из самых экзотических и феерических процессов в природе.
Я приведу еще один пример замечательной предсказательной силы приближения Солнца в виде сферы. Несмотря на то что мы разгадали загадку солнечных нейтрино, у нас все равно остается одна нерешенная проблема, касающаяся внутреннего строения звезд. Если мы экстраполируем Стандартную солнечную модель на другие звезды, то сможем более-менее точно предсказать их эволюцию. Для Солнца стандартная модель дает возраст около 4,55 миллиарда лет. Но когда астрофизики применили эту модель к наиболее старым звездам, входящим в шаровые скопления, находящиеся на периферии Галактики, у них получилось, что возраст таких звездных скоплений превышает 15 миллиардов лет.
В то же время мы можем, используя тот факт, что наблюдаемая нами Вселенная расширяется, и предполагая, что это расширение стечением времени замедляется из-за гравитационного притяжения между галактиками, оценить возраст Вселенной, взяв за основу сегодняшнюю скорость ее расширения. Первое грубое приближение будет выглядеть следующим образом: мы измеряем скорости, с которыми галактики удаляются друг от друга, учитываем, что раньше они удалялись друг от друга быстрее, вычисляем, насколько быстрее, и таким образом получаем верхнюю оценку времени, которое прошло от начала расширения, то есть от момента Большого взрыва. За последние восемьдесят лет космологам удалось определить скорость расширения Вселенной с точностью до 10%. На основе полученных ими данных наше первое приближение дает возраст Вселенной около 11 миллиардов лет.
Вот и суть упомянутой проблемы: возраст старейших звезд в Галактике оказывается больше возраста Вселенной! Но ученые не в первый раз сталкиваются с проблемой определения возраста звезд, и во все предыдущие разы проблема успешно разрешалась, а ученые в результате получали новые знания об устройстве мира. Например, в 1800-х годах оценка возраста Солнца, основанная на предположении, что источником его энергии служит горение угля, давала значение около 10 000 лет. Хотя эта оценка чудесным образом согласовывалась с тем, что написано в Библии относительно времени существования нашего мира, к тому времени уже было показано, что ископаемые окаменелости и геологические пласты земной коры намного старше. Затем, в конце XIX века, два известных физика, лорд Кельвин из Великобритании и Гельмгольц из Германии, показали, что если энергия, которую излучает Солнце, будет освобождаться за счет его гравитационного сжатия, то подобный процесс сможет обеспечить существование нашего светила на протяжении 100 миллионов лет. Хотя эта оценка была значительно лучше предыдущей, к тому моменту геология и эволюционная биология уже свидетельствовали о том, что возраст Земли превышает миллиард лет, и ситуация, при которой Земля оказывалась старше Солнца, не вызывала восторга у ученых.
В 1920 году проблема стала настолько серьезной, что уважаемый астрофизик сэр Артур Стэнли Эддингтон заявил, что в природе просто обязан существовать другой, еще не известный науке механизм производства энергии, способный обеспечить наблюдаемую светимость Солнца на протяжении нескольких миллиардов лет. Многие отнеслись к его заявлению скептически. Несмотря на то что вычисления показывали, что температура в центре Солнца должна достигать десятков миллионов градусов, что по земным меркам достаточно жарко, физики считали, что это все же недостаточно горячо, чтобы придумывать для таких температур новую физику. Эддингтон в одном из своих заявлений предложил несогласным с его идеей отправиться «поискать место погорячее».
Как оказалось, Эддингтон был прав, и в 1930-х годах физик Ханс Бете, которого я еще упомяну в дальнейшем, показал, что недавно обнаруженные ядерные реакции действительно способны обеспечить Солнце энергией на 10 миллиардов лет. За эту работу, которая легла впоследствии в основу Стандартной солнечной модели, Бете получил Нобелевскую премию.
Прежде чем подвергать ревизии Стандартную солнечную модель в отношении применимости ее к определению возрастов старейших звезд, мы с коллегами решили еще раз пересмотреть оценку возрастов шаровых скоплений. В этой оценке содержалась неопределенность, уменьшив которую мы получили новое значение — по нашим выкладкам выходило, что самые старые шаровые скопления в галактике должны иметь возраст около 12 миллиардов лет, но это все равно оказывалось больше возраста Вселенной. Таким образом, конфликт между Стандартной солнечной моделью и космологией был налицо.