Шрифт:
Интервал:
Закладка:
Date dx2(Year(1998),4,Date::mar); // ошибка: 2-й аргумент — не Month
Date dx2(4, Date::mar,Year(1998)); // ошибка: 1-й аргумент — не Year
Date dx2(Date::mar,4,Year(1998)); // ошибка: 2-й аргумент — не Month
Date dx3(Year(1998),Date::mar,30); // OK
Следующая фатальная и неожиданная ошибка выявится только на этапе выполнения программы.
Date dx2(Year(4),Date::mar,1998); // ошибка на этапе выполнения:
// Year::Invalid
Стоило ли выполнять дополнительную работу и вводить обозначения для лет? Естественно, это зависит от того, какие задачи вы собираетесь решать с помощью типа Date, но в данном случае мы сомневаемся в этом и не хотели бы создавать отдельный класс Year.

Обратите внимание на слова static const в определениях переменных min и max. Они позволяют нам определить символические константы для целых типов в классах. Использование модификатора static по отношению к члену класса гарантирует, что в программе существует только одна копия его значения, а не по одной копии на каждый объект данного класса.
9.7.2. Копирование
Мы всегда должны создавать объекты, иначе говоря, всегда предусматривать инициализацию и конструкторы. Вероятно, это самые важные члены класса: для того чтобы написать их, необходимо решить, как инициализировать объект и что значит корректность его значений (т.е. определить инвариант). Уже даже размышления об инициализации помогут вам избежать ошибок.
Затем необходимо решить, можно ли копировать объекты и как это делать? Для класса Date или перечисления Month ответ очевиден: копирование необходимо, и его смысл тривиален: просто копируются все члены класса. Фактически это предусмотрено по умолчанию. Если не указано ничего другого, компьютер сделает именно это. Например, если перечисление Date используется для инициализации или стоит в правой части оператора присваивания, то все его члены будут скопированы.
Date holiday(1978, Date::jul, 4); // инициализация
Date d2 = holiday;
Date d3 = Date(1978, Date::jul, 4);
holiday = Date(1978, Date::dec, 24); // присваивание
d3 = holiday;
Обозначение Date(1978, Date::dec, 24) означает создание соответствующего неименованного объекта класса Date, которое затем можно соответствующим образом использовать. Рассмотрим пример.
cout << Date(1978, Date::dec, 24);
В данном случае конструктор класса действует почти как литерал. Это часто удобнее, чем сначала создавать переменную или константу, а затем использовать ее лишь один раз.
А если нас не устраивает копирование по умолчанию? В таком случае мы можем либо определить свое собственное копирование (см. раздел 18.2), либо создать конструктор копирования и закрытый оператор копирующего присваивания (см. раздел 14.2.4).
9.7.3. Конструкторы по умолчанию
Неинициализированные переменные могут быть источником серьезных ошибок. Для того чтобы решить эту проблему, в языке С++ предусмотрено понятие конструктора, гарантирующее, что каждый объект класса будет инициализирован. Например, мы объявили конструктор Date::Date(int,Month,int), чтобы гарантировать, что каждый объект класса Date будет правильно проинициализирован. В данном случае это значит, что программист должен предоставить три аргумента соответствующих типов. Рассмотрим пример.
Date d1; // ошибка: нет инициализации
Date d2(1998); // ошибка: слишком мало аргументов
Date d3(1,2,3,4); // ошибка: слишком много аргументов
Date d4(1,"jan",2); // ошибка: неправильный тип аргумента
Date d5(1,Date::jan,2); // OK: используется конструктор с тремя
// аргументами
Date d6 = d5; // OK: используется копирующий конструктор
Обратите внимание на то, что, даже несмотря на то, что мы определили конструктор для класса Date, мы по-прежнему можем копировать объекты класса Date. Многие классы имеют вполне разумные значения по умолчанию; иначе говоря, для них существует очевидный ответ на вопрос: какое значение следует использовать, если инициализация не выполнена? Рассмотрим пример.
string s1; // значение по умолчанию: пустая строка ""
vector<string> v1; // значение по умолчанию: вектор без элементов
vector<string> v2(10); // вектор, по умолчанию содержащий 10 строк
Все это выглядит вполне разумно и работает в соответствии с указанными комментариями. Это достигается за счет того, что классы vector и string имеют конструкторы по умолчанию, которые неявно выполняют желательную инициализацию.
Для типа T обозначение T() — значение по умолчанию, определенное конструктором, заданным по умолчанию. Итак, можно написать следующий код:
string s1 = string(); // значение по умолчанию: пустая строка ""
vector<string> v1 = vector<string>(); // значение по умолчанию:
// пустой вектор; без элементов
vector<string> v2(10,string()); // вектор, по умолчанию содержащий
// 10 строк
Однако мы предпочитаем эквивалентный и более краткий стиль.
string s1; // значение по умолчанию: пустая строка ""
vector<string> v1; // значение по умолчанию: пустой вектор;
// без элементов
vector<string> v2(10); // вектор, по умолчанию содержащий 10 строк
Для встроенных типов, таких как int и double, конструктор по умолчанию подразумевает значение 0, так что запись int() — это просто усложненное представление нуля, а double() — долгий способ записать число 0.0.

string s1("Ike"); // объект, инициализированный строкой "Ike"
string s2(); // функция, не получающая аргументов и возвращающая
// строку
Использование конструктора, заданного по умолчанию, — это не просто вопрос стиля. Представьте себе, что отказались от инициализации объектов класса string и vector.
string s;
for (int i=0; i<s.size(); ++i) // ой: цикл выполняется неопределенное
// количество раз
s[i] = toupper(s[i]); // ой: изменяется содержание
// случайной ячейки памяти
vector<string> v;
v.push_back("bad"); // ой: запись по случайному адресу
Если значения переменных s и v действительно не определены, то непонятно, сколько элементов они содержат или (при общепринятом способе реализации; см. раздел 17.5) неясно, где эти элементы должны храниться. В результате будут использованы случайные адреса — и это худшее, что может произойти. В