Шрифт:
Интервал:
Закладка:
Вокруг каждой из точек L1—L5 существуют и «настоящие» периодические орбиты. Траектории вокруг лежащей дальше Луны точки L2, похожие на овал в плоскости, перпендикулярной прямой Земля-Луна, получили особое наименование гало-орбит. В будущем они сыграют важную роль в освоении Луны. На гало-орбитах разместятся спутники-ретрансляторы, позволяющие поддерживать радиосвязь между Землей и базой, расположенной на обратной стороне Луны.
На рис.11 изображена более замысловатая периодическая орбита, показывающая их богатое разнообразие. КА на такой орбите попеременно является то спутником Земли, то спутником Луны.
Рис.11
Задача о движении КА в гравитационном поле Земли и Солнца математически тождественна задаче о движении в поле Земли и Луны. Тут тоже существуют периодические орбиты и точки либрации. Более того, они уже используются на практике. Космический аппарат SOHO для исследования процессов на Солнце находится все время на гало-орбите вблизи точки L1.
Решения задачи о движении объекта в окрестности двух массивных тел оказывается очень полезным, и не только в приложении к Солнечной системе: они используются и при изучении движения вещества в двойных звездных системах, и в звездных скоплениях, и в системах галактик. Но нужно помнить, что все эти полезные решения получены при определенных предположениях. Например, точки Лагранжа существуют в рамках ограниченной задачи: два тела имеют конечные массы (любые; обе массы могут быть даже равны друг другу), а третья бесконечно мала (у нас это космический аппарат). Движение в окрестности коллинеарных точек либрации L1, L2, L3 всегда неустойчиво. Устойчивость движения в окрестности треугольных точек Лагранжа L4, L5 зависит от соотношения между массами основных тел. Обозначим массы основных тел через m1≥m2. Введем безразмерный параметр µ, выражающий отношение этих масс:
µ=m2/(m1+m2)
А.М. Ляпунов доказал, что движение в окрестности треугольных точек либрации устойчиво в первом приближении при 27µ(1—µ)