litbaza книги онлайнРазная литератураВероятностный мир - Даниил Семенович Данин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 59
Перейти на страницу:
открытие из мира.

Почувствовав, что это утверждение звучит, пожалуй, слишком сильно, Бор добавил, что Планк все же испытывал удовлетворение от своего открытия. А как же тогда «попытки устранить»? «Все шло к этому…» — смягчил свое осуждение Бор.

…К счастью для познания природы, жизнь замечательных идей не подвластна воле или безволию их провозвестников. Планк в 10–х годах оттого и предостерегал молодого Иоффе от покушения на природу света, что несколькими годами раньше такое покушение уже предпринял другой молодой исследователь. И притом с несомненным успехом.

То был Эйнштейн. Его–то «первый шаг» и вспомнил Планк в Нобелевской лекции.

Двадцатишестилетнему эксперту 3–го класса из швейцарского бюро патентов почему–то крайне необходимо было то, чего чурался Планк: «идти дальше». В одном и том же 17–м томе немецких «Анналов физики» он опубликовал на протяжении 1905 года три работы, навсегда вошедшие в историю естествознания. Одна открывала путь к окончательному доказательству атомистической структуры вещества. Другая содержала последовательно осмысленные основы теории относительности. Третья вводила в физику квантовую теорию света.

Эйнштейн осмелился провозгласить физическую реальность квантов. Он заговорил о них как о частицах излучения. Буквально: как о тельцах, «локализованных в пространстве»! Если раскрыть это определение, то получится вот что: в своем движении сквозь пространство кванты все время занимают каким–то образом ограниченное место (или «локус» по–латыни). В этом выразилась вся рискованность мысли Эйнштейна.

Превращение, ставшее уделом идеи квантов, выглядит так…

В 1900 году Планк оповестил коллег: отныне излучающие тела отпускают свет теоретикам определенными порциями!

Только теоретикам, потому что на самом деле квантов нет, ими нельзя обладать: отмеренные в момент испускания неизвестным природным механизмом эти порции тотчас сливаются в непрерывный световой поток. Квант — не более чем капля, падающая в океан: там она немедленно теряет свою отдельность, свою локализованность, свою капельность.

В 1905 году Эйнштейн уведомил коллег об иной возможности: испущенные кванты — это корпускулы, сохраняющие в пространстве свою целостность!

Свет отпускается порциями не на мгновение и не только теоретикам: он действительно существует в виде потока квантов. Свидетельством тому законы фотоэлектрического эффекта — возбуждения светом электрического тока, когда световые лучи падают на металл.

Опытные законы этого явления необъяснимы, если свет вымывает из металла блуждающие там электроны, наподобие того, как морские волны постепенно размывают берега. Но эти законы становятся легко выводимыми, если верна другая картина: свет не вымывает, а выбивает электроны. Он обрушивается на вещество, как ливень. Удачливые капли–кванты сталкиваются с попавшимися на их пути электронами и отдают им свой энергетический запас. Энергии квантов и вероятностей столкновений хватает как раз на то, чтобы возникало наблюдаемое истечение электронов — фототок.

Планковские порции излучения, став эйнштейновскими световыми частицами, обнаружили черты крупиц вещества!

Нет, Эйнштейн не сказал в резерфордовском духе, будто теперь он знает, «как выглядит квант». Он не искал для этого предметных сравнений: дробинка… стрела… волновой гребешок. Ему не представилось ничего такого — модельно–механического. Ему довольно было умозаключения: в квантах классического электромагнитного поля явственны свойства обыкновенных частиц.

Как просто и как непонятно! Эйнштейн задал непосильную работу нашему воображению. И непостижимо, как его собственное воображение смирилось с тем, что тут открылось…

….Вот что произошло в физике микромира еще прежде, чем появилась загадка устойчивости планетарного атома: на протяжении пяти лет — в два приема — стартовала теория квантов, чтобы со своей стороны стать, по выражению Макса Планка, источником непреходящего мучительного беспокойства для ученых.

Однако почему же мучительного?

Но сначала — для ясности ответа — кое–что о другом…

3

Пережил ли и Эйнштейн в час своей решимости хоть малейший приступ отчаяния или ему в отличие от Планка это чувство осталось незнакомым?

Впечатление такое, что за скучным конторским столом в бюро патентов и на приветливых улицах швейцарской столицы он одиноко наслаждался своими теоретическими видениями. И нимало не огорчался из–за их явной несовместимости со здравым физическим смыслом. Чудится: его вела победительная моцартовская беззаботность, когда на протяжении одного года он предлагал дисциплинированно мыслящему читателю «Анналов физики» удивительные плоды своих размышлений. Совсем по Пушкину — как в минуту встречи Моцарта с Сальери:

…Ага! увидел ты! а мне хотелось Тебя нежданной шуткой угостить…

Кажется даже, что его нежданные и сверхсерьезные шутки никак нельзя было назвать плодами долгих размышлений. Точнее, чем к кому бы то ни было в физике нашего века, подходили к нему слова, сказанные некогда о Леонардо: «Силы в нем было много, и сочеталась она с легкостью». Если в том году— 1905–м — исполнилось ему всего двадцать шесть, то откуда же было взяться сроку на томительно долгое выращивание плодов? Решали не затраченные часы и дни, а мощь и свобода мысли. Пожалуй, свобода поражает еще больше, чем мощь, и легкость — еще больше, чем сила.

Нежданными «шутками» для физического здравомыслия звучали многие утверждения теории относительности.

И ряду из них предстояло сыграть крайне важную роль в нашей хорошей истории.

…Масса всегда почиталась неизменным достоянием всякого тела, пока оно сохраняет свою цельность. А теперь вдруг обнаружилось, что масса относительна: в покое — одна, в движении — другая. Ее величина возрастет с увеличением скорости тела.

Отчего же никто в течение веков не замечал ничего подобного?

Ответ в математическом законе этого возрастания массы: оно ничтожно, пока скорость движения мала по сравнению со скоростью света, и потому совершенно неощутимо в нашем мире медленных и тяжелых вещей. В земном обиходе представляется колоссальной даже скорость звука — 340 метров в секунду. Но эта скорость почти в миллион раз меньше световой: свет пролетает в секунду 300 000 километров. И по закону, установленному Эйнштейном, современный сверхзвуковой самолет тяжелеет в полете примерно на одну триллионную долю своего первоначального веса в покое — на аэродроме. Одна триллионная (10–12) — если масса самолета, допустим, 10 тонн, то это — одна стотысячная грамма. Как ощутить и замерить такую малость? Естественно, что в прежние века, когда земные экипажи двигались совсем уж неторопливо, никакие наблюдения не могли подсказать исследователям мысль о возможной зависимости массы от скорости.

Что же подсказало ее Эйнштейну? Разумеется, тоже не прямые наблюдения. К ней привела неумолимая логика. А она опиралась на открывшиеся ему неклассические черты в устройстве времени и пространства. Ну а эти черты открылись не без участия тонкого и очень точного эксперимента.

В 1881 году — мальчику Эйнштейну из южнонемецкого города Ульма было тогда около двух лет — чикагский физик Альберт Майкельсон провел нашумевшие оптические измерения. Определялась скорость распространения света

1 ... 8 9 10 11 12 13 14 15 16 ... 59
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?