litbaza книги онлайнИсторическая прозаЗначимые фигуры - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 87
Перейти на страницу:

282 743 388 233.

При делении на 90 млрд получается

3,141592653592222…

Это, пожалуй, выглядит более знакомо. Отношение, о котором идет речь, представляет собой геометрическое определение числа π, равного

3,141592653589793…

Эти два числа совпадают до 11-го знака после запятой (округляя 589 до 59 на 10-м и 11-м месте). В то время это было одним из лучших известных приближений. К 1430 г. персидский математик Джамшид аль-Каши побил этот рекорд, получив в своей книге «Мифтах аль-хисаб» («Ключ к арифметике») 16 знаков после запятой.

До нас дошли кое-какие астрономические тексты Мадхавы, но его математические работы известны только в изложении позднейших комментаторов. Вечная проблема приписывания великому основателю и учителю результатов, полученных его интеллектуальными потомками (так, к примеру, все открытое любым членом пифагорейского культа по умолчанию приписывается Пифагору), означает, что мы не можем с полной уверенностью сказать, какие результаты были получены непосредственно Мадхавой. В дальнейшем рассказе я буду принимать слова его последователей на веру.

Его величайшим достижением было введение бесконечных рядов; таким образом были сделаны первые шаги в направлении математического анализа. Он обнаружил то, что известно на Западе как ряд Грегори для функции арктангенса и ведет к выражению числа π в виде бесконечного ряда. Самые впечатляющие его открытия – бесконечные ряды для тригонометрических функций синуса и косинуса, которые на Западе были найдены только Ньютоном, на 200 с лишним лет позже.

* * *

О жизни Мадхавы известно мало. Он жил в селении Сангамаграма, и это название по традиции добавляется к его имени, чтобы отличать от других людей с именем Мадхава, таких как астролог Видья Мадхава. В селении был храм, посвященный одноименному богу. Считается, что располагалось это селение возле современного селения браминов Ириньялакуда. Это недалеко от города Кочина в штате Керала – длинной вытянутой области на южной оконечности Индии, зажатой между Аравийским морем на западе и горной цепью Западные Гаты на востоке. Во времена позднего Средневековья Керала был крупным центром математических исследований. Большинство раннеиндийских математиков происходили из более северных мест, но по неведомой причине Керала в какой-то момент перехватил инициативу. Математику в Древней Индии, как правило, рассматривали как часть астрономии, и Мадхава основал Керальскую школу астрономии и математики.

В эту школу входило большое количество необычайно сведущих математиков. Парамешвара – индийский астроном, который использовал наблюдение затмений для проверки точности вычислительных методов того времени. Он оставил после себя по крайней мере 25 рукописей. Келаллур Нилаканта Сомаяджи в 1501 г. написал значительный астрономический трактат «Тантрасамграха», состоящий из 432 стихов на санскрите, объединенных в восемь глав. В частности, он включает поправки Нилаканты к теории движения Меркурия и Венеры великого индийского математика Арьябхаты. Он написал также обширный комментарий «Арьябхатия бхасья» на другой труд Арьябхаты, в котором обсуждаются алгебра, тригонометрия и бесконечные ряды для тригонометрических функций. Естхадева написал «Юктибхасу» – комментарий к «Тантрасамграхе», в который добавлены доказательства ее основных выводов. Некоторые считают этот текст первым трудом по дифференциальному исчислению. Мельпатур Нараяна Бхаттатир – математический лингвист – расширил в труде «Пркриясарвавом» аксиоматическую систему Панини из 3959 правил для санскритской грамматики. Прославился он «Нараяниямой» – похвальной песней Кришне, которая поется в Индии до сих пор.

* * *

Тригонометрия, или использование треугольников для измерения, восходит еще к древним грекам; особенно много ей занимались Гиппарх, Менелай и Птолемей. Есть две основные области применения тригонометрии в деятельности человека: топография и астрономия. (Позже к этому списку добавилась навигация.) Существенно здесь то, что расстояния зачастую трудно (а в случае астрономических тел просто невозможно) измерять непосредственно, зато углы можно измерять везде, где есть прямая видимость. Тригонометрия дает возможность вычислить длины сторон треугольника по его углам, при условии что хотя бы одна сторона известна. В топографии одна тщательно измеренная доступная база и множество углов ведут к появлению точной карты; то же, с некоторыми нюансами, относится и к астрономии.

Значимые фигуры

Пусть AB - дуга окружности радиуса 1 с центром в точке O. Хорда угла AOB (величина которого составляет 2θ) есть длина отрезка AB. Синус угла AOC (величина которого равна θ) равен длине отрезка AC. Косинус угла θ равен длине отрезка OC, а тангенс - отношению AC/OC.

Греки использовали в своих задачах хорду угла (см. рисунок). Гиппарх в 140 г. до н. э. составил первую таблицу хорд и пользовался ею как в плоской, так и в сферической тригонометрии. Последняя имеет дело с треугольниками, образованными дугами больших кругов на сфере, и это важно в астрономии, поскольку звезды и планеты при наблюдении с Земли кажутся лежащими на небесной сфере – воображаемой сфере, в центре которой находится Земля. Точнее говоря, направления на эти тела соответствуют точкам на любой подобной сфере. Во II в. Птолемей включил таблицы хорд в свой «Альмагест», и его результаты широко использовались на протяжении следующих 1200 лет.

Математики Древней Индии, опираясь на работы греков, добились больших успехов в тригонометрии. Они обнаружили, что удобнее использовать не хорды, а тесно связанные функции синуса (sin) и косинуса (cos), которыми мы пользуемся и сегодня. Синусы впервые появились в «Сурья сиддханта» – серии индийских астрономических текстов, датируемых примерно 400 г.; Ариабхата около 500 г. развил эту идею в своем труде «Ариабхатия». Аналогичные идеи возникли независимо и в Китае. Индийскую традицию продолжили Варахамихира, Брахмагупта и Бхаскара Ачарья, в работах которых имеются полезные аппроксимации функции синуса и некоторые базовые формулы, такие как

sin2θ + cos2θ = 1

у Варахамихиры; по существу, это тригонометрическая интерпретация теоремы Пифагора.

До недавнего времени ученые считали, что после Бхаскара Ачарья в индийской математике наступил застой, во время которого ученые ограничивались лишь комментариями к классическим работам, и лишь после того, как Британия присоединила Индию к своей активно развивающейся империи, там появилась новая математика. Возможно, это было правдой в отношении значительной части Индии, но не в отношении Кералы. Джозеф отмечает, что «качество математики, доступной в текстах [Керальской школы] … настолько высокого уровня в сравнении с тем, что было достигнуто в классический период, что кажется невозможным, чтобы одно произошло от другого». Однако сколько-нибудь сравнимые идеи появились лишь несколькими столетиями позже в Европе, так что никакого правдоподобного «недостающего звена» разглядеть не удается. Достижения Керальской школы, судя по всему, были ее собственными.

1 ... 8 9 10 11 12 13 14 15 16 ... 87
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?