litbaza книги онлайнИсторическая прозаЗначимые фигуры - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 10 11 12 13 14 15 16 17 18 ... 87
Перейти на страницу:

Такова была жизнь в Италии эпохи Возрождения около 1520 г. – по крайней мере, такой она была для Джироламо Кардано, описавшего свой образ жизни и многое другое в откровенной автобиографии «О моей жизни». Кардано – энциклопедист, особенно талантливый в области математики и медицины, – наслаждался (если можно так сказать) жизнью, достойной мыльных опер и бульварных газет. Он промотал фамильное состояние, пристрастился к азартным играм, разорился и угодил в богадельню. Заподозрив партнера в шулерстве, он полоснул того по лицу ножом. Он был обвинен в ереси и заключен в тюрьму; его сын был казнен за отравление жены. А еще Кардано вернул речь онемевшему епископу Сент-Эндрюсу, за что получил вознаграждение в 1400 золотых крон. Вернувшись в Италию с триумфом, он был принят в Коллегию врачей, которая прежде не один десяток лет отчаянно пыталась не допустить его в свои ряды.

И что самое важное, он был великолепным математиком и написал один из лучших учебников всех времен – «Великое искусство» (Ars Magna) с подзаголовком «Правила алгебры». В Ars Magna алгебра вступила в эпоху зрелости, обретя сразу и символьное выражение, и логику изложения. Кардано можно рассматривать как еще одного кандидата на титул «отца алгебры». Но в полном соответствии с характером этот статус он приобрел не без шулерства и скандала.

* * *

Кардано был незаконнорожденным. Его отец Фацио – стряпчий с мощным математическим талантом и бешеным темпераментом – жил в Павии и дружил с Леонардо да Винчи. Он всегда ходил в необычном лиловом плаще и черной ермолке; к 55 годам Фацио потерял все зубы. Мать Джироламо Кьяра (урожденная Микерия) – молодая вдова с тремя детьми – вышла замуж за его отца намного позже. Она была толстой, темпераментом не уступала Фацио и обижалась по малейшему поводу. Кроме того, была глубоко религиозна и весьма умна. Когда она была беременна Джироламо, в Милане появилась чума, поэтому Кьяра уехала в деревню, тогда как трое ее старших детей остались в городе и умерли от чумы. Ожидаемое рождение Кардано также не вызывало радости: «Как мне рассказывали, после нескольких не увенчавшихся успехом попыток применить некоторые абортивные средства я родился 24 сентября 1500 г.»[9].

Фацио, хотя и состоял стряпчим по роду занятий, был достаточно сведущ в математике, чтобы консультировать да Винчи в вопросах геометрии; кроме того, он преподавал геометрию в Университете Павии и в Школе Пьятти в Милане. Свои навыки в математике и астрологии он передал незаконнорожденному сыну: «В раннем детстве, когда мне было около девяти лет, мой отец обучал меня дома началам арифметики и некоторым тайным знаниям, неизвестно откуда почерпнутым им. Вскоре после того он начал учить меня и арабской астрологии… По наступлении двенадцатилетнего возраста он же заставил меня изучать первые шесть книг Евклида…»[10]

Джироламо был болезненным ребенком, и планы отца ввести его в семейное юридическое дело потерпели неудачу. Он поступил на медицинский факультет Университета Павии и блестяще его окончил; несмотря на то что резкость его натуры многих оскорбляла, Джироламо был избран ректором университета с перевесом в один голос. Успех ударил ему в голову. Именно в этот период он бродил ночами по городским улицам, вооруженный шпагой и музыкальными инструментами, и предавался азартным играм. Математическое понимание шансов на выигрыш давало ему заметное преимущество, и около 1564 г. Джироламо написал одну из первых книг о вероятностях, «Книгу об азартных играх», опубликованную только в 1663 г. Помогало и умение играть в шахматы – на деньги. Но, пустившись в разгул, он потерял и свою удачу, и наследство.

Тем не менее Джироламо упрямо гнул свою линию. Обладая теперь медицинским дипломом, он попытался вступить в Миланскую коллегию врачей – верный путь к выгодной профессии и благополучной жизни. На этот раз привычка откровенно высказывать свое мнение подвела его, и Кардано отказали в приеме, поэтому он стал врачом в деревне под Миланом. Средств, которые приносило это место, едва хватало на жизнь, и Джироламо женился на дочери капитана местной милиции Лючии Бандарини. Вновь отвергнутый колледжем, он вернулся к привычным занятиям – и опять промотал состояние. После того как Джироламо продал все свои пожитки, включая и драгоценности Лючии, оба они оказались в богадельне. «Я разорился! Я погиб!» – писал Джироламо. У них с Лючией родился ребенок, имевший от рождения несколько небольших дефектов, но не считавшийся по тем временам ущербным. К этому времени Фацио уже умер, и Джироламо был назначен его преемником; дела наконец-то пошли в гору. В 1539 г. даже Колледж врачей перестал противиться его вступлению. Кроме того, он придумал для себя новый способ заработка, опубликовав несколько математических книг. Одна из этих книг навсегда обеспечила ему место в рядах первопроходцев математики.

* * *

Большинство областей математики появились на свет в результате сложных и путаных исторических процессов, в которых невозможно обнаружить никакого определенного направления, – именно потому, что направление как таковое возникает тогда, когда фрагментарные идеи начинают связываться в единую логическую цепочку. Джунгли расширяются по мере того, как вы их исследуете. Не многие черты алгебры берут начало от древних греков, у которых не было эффективной нотации, то есть системы записи, даже для натуральных чисел. Придумав сокращенную форму записи для неизвестных величин, Диофант дал протоалгебре мощный толчок, но сам он был сосредоточен исключительно на решении уравнений в натуральных числах, что вело скорее к развитию теории чисел. Греческие и персидские геометры решали задачи, которые мы сегодня считаем алгебраическими, чисто геометрическими средствами. Аль-Хорезми формализовал алгебраические процессы, но не догадался ввести символьные обозначения.

Задолго до всего вышеописанного вавилоняне уже открыли первый по-настоящему важный метод алгебры – метод решения квадратных уравнений. Вопросы такого рода, как мы понимаем сегодня, открывают дорогу алгебре в той форме, какую она приобрела к XIX в., – а это основная часть того, что изучается в школьной математике. А именно определение значения (или короткого списка возможных значений) неизвестной величины из некоторого численного отношения между этой величиной и ее степенями – квадратом, кубом и т. д. То есть решение полиномиального уравнения.

Если максимальная степень неизвестного в уравнении равна двум, уравнение называется квадратным. Писцы-математики Древнего Вавилона знали, как решать подобные примеры, и учили этому школьников. В качестве доказательства у нас имеются глиняные таблички с загадочными клиновидными буквами. Самое сложное здесь – извлечь квадратный корень из нужной величины.

Сегодня, задним числом, следующий шаг представляется очевидным: кубические уравнения, в которых наряду с квадратом неизвестной величины и с ней самой фигурирует также ее куб. Одна вавилонская табличка вроде бы намекает на особый метод решения кубических уравнений, но это все, что мы знаем об открытиях вавилонян в данной области. Греческие и персидские геометрические методы с этим справлялись; самое подробное рассмотрение такой задачи принадлежит Омару Хайяму, знаменитому больше своими стихами, особенно четверостишиями рубаи. Чисто алгебраическое решение представлялось недостижимым.

1 ... 10 11 12 13 14 15 16 17 18 ... 87
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?