Шрифт:
Интервал:
Закладка:
Цветовая выборка
Вы когда-нибудь замечали, что временами собаки как будто не видят яркий и заметный мяч? Это происходит потому, что у большинства млекопитающих есть только два (а не три, как у человека) цветочувствительных пигмента сетчатки (или оптина), что и объясняет присущую животным форму дальнотизма.
Так почему же у нас их три? В большинстве глаз млекопитающих был найден ген MWS/LWS, ответственный за кодирование одного из двух пигментов. У предков приматов и некоторых обезьян этот ген был продублирован.
Как правило, копии запасных генов быстро вырождаются, приобретая мутации, но в этом случае мутации в одной копии приводят к появлению опсина, способного распознавать другой оптический спектр. Таким образом, мы приобрели улучшенное трихроматическое цветовое зрение.
Но есть и другая сторона этой истории. В действительности цветовое зрение предков позвоночных было лучше, чем у нас, благодаря наличию четырех цветочувствительных опсинов. В отличие от нас, эти животные могли видеть ультрафиолет и другие цвета. Эту способность унаследовало большинство амфибий, рептилий и птиц… Так почему же млекопитающие потеряли целых два цветочувствительных гена опсина?
Скорее всего, объяснение можно найти в том факте, что некоторые древние млекопитающие являлись ночными животными с небольшой потребностью в цветочувствительных опсинах, которые «работали» только в дневное время. В результате эти гены подверглись мутации, а часть из них была и вовсе потеряна – если вы не пользуетесь чем-то, то оно теряется.
Наше зрение могло развиваться в очень разных направлениях. Как только предки гекконов перешли на ночной образ жизни, у них цветное ночное видение.
Кристально чистый
Вы бы не смогли прочесть эти строки без белков кристаллинов в глазу. Благодаря своему высокому показателю преломления эти прозрачные белки способны преломлять свет, позволяя хрусталику глаза проецировать свет на сетчатку. Так где же эволюция смогла найти прозрачные белки с высоким показателем преломления для развития глаз? Как оказалось, везде.
Возьмите, например, альфа-кристаллин, который содержится во многих глазах животных, в том числе и у человека. Изначально это был белок теплового шока. Данный тип белка поддерживает функциональное состояние других белков. По сути, это все тот же белок теплового шока. Он продолжает выполнять данную функцию в некоторых тканях организма, производящих лишь небольшое количество белка. Однако в хрусталике белок вырабатывается в большом количестве, поэтому основной функцией кристаллина стала оптическая.
Есть только один ген, который кодирует альфа-кристаллин (HspB5). Таким образом, образование новой функции (например, преломление света) не обязательно сопряжено с появлением совершенно нового гена, кодирующего новый белок. Временами дело ограничивается несколькими мутациями в последовательностях, определяющих объем существующего белка, способного производиться в конкретном виде ткани. Иногда эволюция идет по простому пути.
Мемы: эволюционируют не только гены
Термин «мем» придумал биолог Ричард Докинз в своей книге «Эгоистичный ген» (1976), рассматривавшей принципы дарвинизма. Идея Докинза заключалась в том, что дарвиновская теория эволюции посредством естественного отбора не обязательно применима только к биологии. Эволюционный процесс возможен благодаря механизму репликации, создающему множество слегка отличающихся копий той же самой информации, и тому факту, что лишь несколько созданных копий сохранится для последующей репликации. Информация, которая реплицируется, изменяется и отбирается, называется репликатором, а сам процесс хорошо известен в биологии. В биологической эволюции репликаторами служат гены. Однако нет веских причин, по которым не могло бы существовать других эволюционных систем с другими репликаторами. Поэтому Докинз и придумал термин «мем» для обозначения культурного репликатора.
Все, что вы узнали, скопировав информацию от другого, – это мем. Сюда относится ваша привычка к правостороннему или левостороннему движению, поеданию тостов с фасолью, ношению джинсов и поездкам в отпуск. Вы бы не делали ничего из вышеперечисленного, если бы до вас никто не попробовал этого или чего-то очень похожего. Имитация или подражание, в отличие от иных форм обучения, являются своего рода копированием или репликацией. Другие животные мастерски способны к обучению. Например, белки запоминают сотни мест своих запасов на зиму, а коты или собаки выстраивают расширенные ментальные карты. Но все это – обучение по ассоциациям или методом проб и ошибок. Только имитация позволяет передать плоды обучения от одного животного к другому; и люди не имеют себе равных, когда дело доходит до подражания.
Сама по себе идея мемов как репликаторов была жестко раскритикована, и многие биологи ее отвергли. И все же меметика может многое предложить для объяснения человеческой природы.
Согласно теории мемов, люди радикально отличаются от других видов, потому что мы единственные являемся машинами мемов. Человеческий интеллект не просто выше или лучше остальных, это – нечто совершенно иное, основанное на новом эволюционном процессе и новом виде информации.
Рыбный запах
Благодаря дупликации генов за сотни миллионов лет один ген может положить начало не только одному новому гену, но и сотням других.
Например, у нас, людей, имеется порядка 400 генов, кодирующих обонятельные рецепторы. Все они произошли от двух предковых генов очень древней рыбы, жившей около 450 миллионов лет назад.
Эволюция этого «семейства» гена была весьма хаотичной. Исследования генома показали, что в ходе эволюции млекопитающих вместо постоянного приобретения новых генов для новых обонятельных рецепторов происходила их масштабная потеря. Данный процесс получил название «эволюция рождения и смерти».
Это привело к появлению больших различий между млекопитающими. Вы догадываетесь о том, что у собак имеется больше рецепторов, чем у людей, – порядка 800 действующих обонятельных генов. Но почему же у коров их еще больше – свыше 1000?
Молекулярно-эволюционный биолог Масатоси Неи предположил, что для хорошо развитого обоняния млекопитающим требуется некое минимальное количество различных обонятельных рецепторов. То, что животные делают с уже имеющимися рецепторами (иначе говоря, со связью с мозгом в процессе развития), может иметь большее значение для тонкого обоняния.
Неи полагает, что пока у животных есть больше обонятельных рецепторов, чем нужно, естественного отбора не произойдет, а гены будут беспорядочно приобретаться и теряться. Иначе говоря, генетический дрейф может объяснить отличия в типе и количестве обонятельных рецепторов у млекопитающих.
Дважды ничто
Гены HOX представляют собой семейство близкородственных генов, отвечающих за эмбриональное развитие животных. Это «главные переключатели», белки, которые координируют активацию других наборов генов в процессе развития.
Все гены HOX произошли от гена protoHOX очень древнего животного. У предка позвоночных protoHOX неоднократно дублировался, образуя кластер из 13 генов HOX. Потом был продублирован и весь геном в этой родословной предков. Затем была фаза еще одного дублирования, в ходе которой создались четыре кластера генов HOX, которые теперь контролируют развитие всех живущих позвоночных.