Шрифт:
Интервал:
Закладка:
Оказывается, нет. Если основание, например, семь, то «16» означает 7 + 6=13, число нечетное. То же будет и для всякого нечетного основания (потому что всякое нечетное число + 6 = нечетному числу).
Отсюда вывод, что знакомый нам признак делимости на два (последняя цифра четная) безусловно пригоден только для десятичной системы счисления, для других же – не всегда. А именно: он верен только для систем счисления с четным основанием: 6-ричной, 8-ричной и т. п. Каков же признак делимости на 2 для систем с нечетным основанием? Достаточно краткого размышления, чтобы установить его: сумма цифр должна быть четной. Например, число «136» четное во всякой системе счисления, даже и с нечетным основанием; действительно, в последнем случае имеем: нечетное число[19] + нечетное число + четное = четному числу.
С такою же осторожностью надо отнестись к задаче: всегда ли число 25 делится на 5? В 7-ричной или в 8-ричной системе число, так изображенное, на 5 не делится (потому что оно равно девятнадцати или двадцати одному). Точно так же общеизвестный признак делимости на 9 (сумма цифр…) правилен только для десятичной системы. Напротив, в пятиричной системе тот же признак применим для делимости на 4, а, например, в семиричной – на 6. Так, число «323» в пятиричной системе делится на 4, потому что 3 + 2 + 3 = 8, а число «51» в семиричной – на 6 (легко убедиться, переведя числа в десятичную систему: получим соответственно 88 и 36). Почему это так, читатель сам сможет сообразить, если вникнет хорошенько в вывод признака делимости на 9 и приложит те же рассуждения, соответственно измененные, например, к семиричной системе для вывода признака деления на 6.
Труднее доказать чисто арифметическим путем справедливость следующих положений:
Знакомые с начатками алгебры легко найдут основание, объясняющее свойство этих равенств. Остальные читатели могут проверить их рядом проб для разных систем счисления.
Дроби без знаменателя
Мы привыкли к тому, что без знаменателя пишутся только десятичные дроби. Поэтому с первого взгляда кажется, что написать прямо без знаменателя дробь 2/7 или 1/7 нельзя. Дело представится нам, однако, иначе, если вспомним, что дроби без знаменателя возможны и в других системах счисления. Что, например, означает дробь «0,4» в пятиричной системе? Конечно, 4/5. Дробь «1,2» в семиричной системе означает 12/7. А что означает в той же семиричной системе дробь «0,33»? Здесь результат сложнее: 3/7 + 3/49 = 24/49.
Рассмотрим еще несколько примеров недесятичных дробей без знаменателя:
«2,121» в троичной системе 2 + 1/3 + 2/9 + 1/27 = 216/27
«1,011» в двоичной системе 1 + 1/4 + 1/8 = 13/8
«3,431» в пятиричной системе 3 + 4/5 + 3/25 + 1/125 = 3116/125
«2, (5)» в семиричной системе 2 + 5/7 + 4/49 + 5/343 +… = 25/6
В правильности последнего равенства читатель легко может убедиться, если попробует применить к данному случаю, с соответствующим видоизменением, рассуждения, относящиеся к превращению десятичных периодических дробей в простые.
ЗАДАЧА-ШУТКА
Какое число делится на все числа без остатка?
(Ответ – на стр. 102.)
Глава VI галерея числовых диковинок
Арифметическая кунсткамера
В мире чисел, как и в мире живых существ, встречаются подлинные диковинки, редкие феномены, обладающие исключительными свойствами. Из таких необыкновенных чисел можно было бы составить своего рода музей числовых редкостей, настоящую «арифметическую кунсткамеру». В витринах подобного музея нашли бы себе место не только числовые исполины, о которых мы побеседуем еще в особой главе, но и числа сравнительно небольшие, выделяющиеся из ряда других какими-либо необычайными свойствами. Некоторые из них уже по внешности привлекают к себе интерес и внимание; другие открывают свои диковинные особенности лишь при более близком знакомстве. Приглашаю читателя пройтись со мною по галерее таких числовых диковинок и познакомиться с некоторыми из них.
Пройдем, не останавливаясь, мимо первых витрин, заключающих числа, свойства которых нам уже знакомы. Мы знаем уже, почему попало в арифметическую кунсткамеру число 2:
не потому, что оно первое четное число, а потому, что оно – основание самой удобной системы счисления. Не удивимся мы, встретив здесь 5 – одно из наших любимейших, после десяти, чисел, играющее важную роль при всяких «округлениях», в том числе и при округлении цен, которое обходится нам так дорого.Не будет неожиданностью для нас найти здесь и число 9
– конечно, не как символ постоянства[20], а как число, облегчающее нам проверку арифметических действий. Но вот витрина, за стеклом которой мы видимчисло 12
Чем оно замечательно? Конечно, это число месяцев в году и число единиц в дюжине, но что, в сущности, особенного в дюжине? Не многим известно, что 12
– старинный и едва не победивший соперник числа 10 за почетный пост основания системы счисления. Культурнейший народ древнего Востока – вавилоняне и их предшественники, еще более древние первонасельники Двуречья – вели счет в 12-ричной системе счисления. И если бы не пересилившее влияние Индии, подарившей нам десятичную систему, мы, весьма вероятно, унаследовали бы от Вавилона 12-ричную систему. Кое в чем мы и до сих пор платимдань 12-ричной системе, несмотря на победу десятичной. Наше пристрастие к дюжинам и гроссам, наше деление суток на две дюжины часов, деление часа – на 5 дюжин минут, и минуты – на столько же секунд, наше деление круга на 30 дюжин градусов, наконец, деление фута на 12 дюймов и многие другие пережитки глубокой древности – красноречиво свидетельствуют, как велико еще влияние этой древней системы. Надо ли радоваться тому, что в борьбе между дюжиной и десяткой победила последняя? Конечно, сильными союзницами десятки были и остаются наши собственные руки с десятью пальцами