litbaza книги онлайнДомашняяМария Кюри. Радиоактивность и элементы - Адела Муньос Паес

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 12 13 14 15 16 17 ... 30
Перейти на страницу:

Мария начала кипятить эту коричневую пыль в растворе, в котором содержался карбонат натрия, где растворялись карбонаты алюминия, свинца, кальция и натрия, и оставался осадок, содержащий карбонаты и сульфаты щелочноземельных металлов и радиоактивных элементов. На этот осадок воздействовали соляной кислотой, которая отделяла растворимые хлориды, оставляя осадок из нерастворимых сульфатов, среди которых был сульфат радия. К этому раствору, содержавшему хлориды, добавляли сероводород, что давало осадок сульфидов, среди которых был, в свою очередь, сульфид полония. В раствор, оставшийся после осаждения сульфидов, добавляли аммиак, чтобы сделать его более основным (увеличить уровень pH), благодаря чему осаждались нерастворимые гидроксиды. Через некоторое время в этих гидроксидах нашли новый радиоактивный элемент, актиний. С каждой тонны отходов настурана, полученных из Йоахимсталя, Мария получила от 10 до 20 кг щелочноземельных сульфатов, которые включали немного сульфата радия.

В осадке сульфатов повторялся процесс образования карбонатов, хлоридов, сульфидов и гидроксидов и получался раствор хлорида кальция, который отделяли, и осадок хлорида бария, содержащий небольшое количество хлорида радия. Поскольку барий и радий имеют очень сходные химические свойства, единственным способом разделить их была фракционная кристаллизация. Чтобы осуществить ее, нужно было нагреть до кипения осадок, в котором содержалась смесь двух хлоридов в точном количестве дистиллированной воды, необходимом для их растворения. При медленном охлаждении этого раствора сначала осаждались «красивые кристаллы» хлорида радия, как писала Мария в своей диссертации, поскольку хлорид радия немного менее растворим, чем хлорид бария. Этот процесс был более чем деликатным, поскольку сразу же начинал выпадать в осадок хлорид бария, и до этого нужно было отделить крошечные кристаллы хлорида радия.

Спонтанность луча — это загадка. Каков источник энергии лучей Беккереля? Следует ли искать его в радиоактивных телах или во внешней среде?

Пьер Радваньи, «Чета Кюри»

Из-за сходства между хлоридами бария и радия последний не получался чистым после первой кристаллизации, поэтому процесс нужно было повторять столько раз, сколько необходимо, по мере увеличения радиоактивности. В наиболее чистом виде она достигла величины, в миллион раз превышающей радиоактивность урана. На основе самого активного образца хлорида радия, который также был самым чистым, Мария определила атомную массу радия, измерив количество хлорида с помощью гравиметрического метода осаждения хлорида серебра. Чтобы на основе этого значения получить атомную массу радия, ей пришлось сделать дополнительное предположение о том, что его стехиометрия такая же, как у бария, то есть два атома хлора на каждый атом радия. Поскольку барий (атомная масса 137) намного легче радия, масса, которую она получала, увеличивалась по мере улучшения метода отделения, когда элемент получался все более и более чистым.

Во время всего этого процесса Мария работала вслепую, она отслеживала путь этих призрачных элементов, которые образовывали соединения с неизвестными свойствами в чрезвычайно малых количествах. Кроме интуиции, главным ориентиром, указывающим правильный путь, была радиоактивность, которую нужно было измерять для каждой части раствора или осадка, полученного на каждом этапе процесса, пользуясь весами с пьезоэлектрическим кварцем.

Но помимо всех этих сложностей было нечто крайне обескураживающее. Обычно в минералах находятся рядом элементы схожей химической активности, то есть элементы, которые занимают смежные позиции в периодической таблице. Например, упомянутые радий и барий — металлы группы щелочноземельных, группы 2, как видно из периодической таблицы. Однако элементы, открытые Марией в настуране, радий и полоний, находились в группах 2 и 16 соответственно. Они оба располагаются очень далеко друг от друга в периодической таблице, и это показывает, что у них очень разные химические свойства. Кроме того, они оба соотносятся с ураном, элементом группы актиноидов, который химически также не связан ни с одним из них. Как было открыто позже, причина этой странной связи — не в химической близости, а в процессе радиоактивного распада, который превращает одни элементы в другие. Присутствие всех трех элементов в одном и том же минерале имеет радиогенное происхождение. У Марии не только не было этой информации, но в случае, если бы она догадалась об этом, ни она, ни любой другой ученый ее времени не решились бы обнародовать ее, поскольку это значило бы, что произошел процесс трансмутации, который безуспешно искали в течение многих веков алхимики, к тому времени полностью дискредитированные.

Мария могла бы запатентовать процесс, который она с таким трудом открыла, для будущей коммерческой эксплуатации радия, но она решила, что работает ради прогресса науки, а не для получения материальных благ, поэтому вместо того, чтобы патентовать процесс, она сделала его публичным. Более того, как она, так и Пьер предоставили все детали экспериментов тем, кто попросил. Через много лет, во время своей поездки в США, Мария смогла увидеть в некоторых лабораториях посланные ею письма с изложением деталей процесса.

* * *

ПРОМЫШЛЕННОСТЬ И ГОСУДАРСТВЕННОЕ ИССЛЕДОВАНИЕ

К середине 1899 года стало ясно, что извлечение радиоактивных элементов, особенно первая часть работы с остатками минерала, выше сил одного человека, поэтому Пьер попросил помощи у Центрального общества химических продуктов. С тех пор первичная обработка минерала, который тоннами поступал из Богемии, производилась на одной из фабрик этого общества. Андре Дебьерн, бывший ученик Пьера в Школе промышленной физики и химии, а к тому времени преподаватель, ответственный за химическую лабораторию в Сорбонне, начал сотрудничать с четой Кюри. Первое, что сделал Дебьерн, — приспособил к промышленному масштабу метод обработки для извлечения радия из остатков настурана, который придумала и реализовала Мария в лаборатории; это было начало долгого сотрудничества с промышленностью. В том виде, как Мария понимала науку, не было разделения между базовым и прикладным исследованиями, а только между частным и государственным. Она поддерживала развитие исследований на высоком уровне, с государственным финансированием, что вполне могло пригодиться в промышленности.

САМОЕ ЗНАМЕНИТОЕ УРАВНЕНИЕ В ИСТОРИИ: Е = тс2

Одной из вещей, которые интересовали Анри Беккереля с тех пор, как он открыл радиоактивность, было происхождение ее энергии. Семейная научная традиция и полученные знания в области термодинамики заставляли Беккереля думать, что речь идет о процессе очень длительной фосфоресценции, хотя ни один из его экспериментов не подтвердил этой гипотезы. Пьер Кюри, который измерил тепло, испускаемое радием, также подумал о разновидности фосфоресценции, при которой источником энергии был не солнечный свет, а необнаружимые космические лучи, которые могли улавливать только уран и торий. Хотя все эксперименты, которые они осуществили, намекали на это, ни один из этих исследователей не был способен представить себе, что источник энергии находится внутри атома. Ключ дал Эйнштейн в 1906 году, установив равносильность между массой и энергией. Источник энергии, выделяемой в радиоактивных процессах, находится в мельчайших частицах массы, которые «теряются» во время ядерных реакций, хотя на самом деле они трансформируются в энергию согласно самому знаменитому уравнению в истории, Е = тс2, где Е — энергия, т — «потерянная» (а в действительности трансформированная) масса, а с — скорость света. Поскольку эта скорость так высока (300 000 км/с), хотя величина потерянной массы очень мала (порядка одной десятитысячной от массы атома водорода), высвобождаемая энергия невероятно велика, в миллионы раз выше, чем от любой химической реакции.

1 ... 9 10 11 12 13 14 15 16 17 ... 30
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?