Шрифт:
Интервал:
Закладка:
Но самое удивительное в ошибочном законе Аристотеля не то, что он неправильный, а то, что в нем за две тысячи лет никто не усомнился. Как удалось очевидно неверной идее достичь такого примечательного долголетия? Перед нами пример «идеального шторма» – уникального стечения неблагоприятных обстоятельств: совокупное действие трех сил обеспечило создание незыблемой догмы. Во-первых, налицо простой факт: в отсутствие точных средств измерения закон Аристотеля вроде бы соответствует жизненному опыту: листы папируса и правда парили в воздухе, а куски свинца – нет. Нужен был гений Галилея, чтобы заявить, что жизненный опыт и здравый смысл могут наталкивать на неверные выводы. Во-вторых, надо учесть, каким колоссальным весом обладала практически непревзойденная репутация и авторитет Аристотеля как ученого. Ведь именно он и не кто иной заложил основы западной интеллектуальной культуры. Аристотель буквально сказал все обо всем – будь то исследование всех природных явлений или фундамент этики, метафизики, политики и искусства. Мало того – Аристотель в некотором смысле научил нас, как именно следует думать, поскольку первым начал исследовать формальную логику. Сегодня с революционной и, можно сказать, совершенной системой логических выводов – силлогизмов – Аристотеля знаком, наверное, каждый школьник.
1. Всякий грек – человек.
2. Всякий человек смертен.
3. Следовательно, всякий грек смертен.
(Подробнее о таких логических конструкциях мы поговорим в главе 7.)
Третья причина невероятной жизнестойкости ошибочной теории Аристотеля заключается в том, что христианская церковь включила ее в свою систему догматов. А это надежно защищало предположения Аристотеля от любых попыток их оспорить.
Несмотря на значительный вклад в систематизацию дедуктивной логики, Аристотеля чтят не за достижения в математике. Пожалуй, достойно удивления, что человек, который, в сущности, основал науку, поскольку догадался, что к ней нужен систематический подход, так мало думал о математике (гораздо меньше Платона) и был настолько не силен в физике. Хотя Аристотель признавал важность численных и геометрических соотношений в науках, математику он по-прежнему считал абстрактной дисциплиной, никак не связанной с физической реальностью. Следовательно, хотя интеллектуальная мощь Аристотеля не подлежит сомнению, в мой список «математиков-волшебников» он не входит.
«Волшебниками» я буду называть тех уникумов, которые способны вытаскивать кроликов из буквально пустых шляп, тех, кто открыл связи между математикой и природой, которые раньше никому не приходили в голову, тех, кто способен наблюдать сложные природные феномены и вычленять из них кристально чистые математические законы. В иных случаях эти мыслители высшего порядка продвигали математику вперед даже благодаря своим наблюдениям и экспериментам. Вопрос о непостижимой эффективности математики при объяснении природных явлений и не возник бы, если бы не подобные волшебники. Загадка могущества математики прямо и непосредственно порождена чудесными озарениями этих исследователей.
Чтобы воздать должное всем великолепным физикам и математикам, благодаря которым сформировалась наша картина мироздания, одной книги не хватит. В этой и следующей главе я расскажу лишь о четырех титанах минувших веков – о научных звездах самой что ни на есть первой величины, которых без малейших сомнений можно назвать волшебниками. Первый волшебник в моем списке запомнился человечеству довольно странным поступком: он пробежал по улицам родного города в чем мать родила.
Когда историк математики Эрик Темпл Белл был вынужден принять решение, кого включить в число трех своих любимых математиков, то пришел к следующему выводу.
В любой список трех «величайших» математиков в истории обязательно вошел бы Архимед. Остальные два имени, которые обычно ставят в один ряд с Архимедом, – это Ньютон (1642–1727) и Гаусс (1777–1855). Если же принять в расчет относительное богатство – или бедность – математики и естествознания в соответствующие исторические периоды, когда жили эти титаны, и оценить их достижения в контексте того времени, многие, пожалуй, отдадут пальму первенства Архимеду.
Архимед (287–212 гг. до н. э.; на рис. 10 приведен бюст, который считают портретом Архимеда, но на самом деле это, вероятно, бюст какого-то спартанского царя) и в самом деле был Ньютоном и Гауссом своего времени – и отличался таким блестящим умом, живым воображением и поразительной интуицией, что и современники, и последующие поколения произносили его имя с почтением и благоговением. И хотя Архимед больше известен инженерными изобретениями, прежде всего он был математиком, и как математик он опередил свое время на века. К сожалению, о детстве и юности Архимеда и о его семье нам почти ничего не известно. Первую его биографию написал некто Гераклид, до нас она не дошла, и то немногое, что нам известно о его жизни и гибели, восходит к сочинениям римского историка Плутарха[21]. А Плутарх (ок. 46–120) больше интересовался победами римского военачальника Марцелла, который в 212 году до н. э. завоевал город Сиракузы, где жил Архимед (Plutarch ок. 75). К счастью для истории математики, Архимед во время осады Сиракуз доставил Марцеллу столько хлопот, что три величайших историка того времени – Плутарх, Полибий и Тит Ливий – не могли его не упомянуть.
Рис. 10
Архимед родился в Сиракузах – в то время это была греческая колония на Сицилии[22]. По его собственным словам, он был сын астронома Фидия, о котором почти ничего не известно, кроме того, что он оценил соотношение диаметров Солнца и Луны. Вероятно, Архимед был в каком-то родстве и с царем Гиероном II, который и сам был незаконнорожденным сыном одного аристократа (от рабыни-наложницы). Какие бы узы ни связывали Архимеда с царским родом, и сам Гиерон, и его сын Гелон относились к ученому с большим уважением. В юности Архимед прожил некоторое время в Александрии (свидетельства об этом обсуждаются в Dijksterhuis 1957), где изучал математику, а затем вернулся в Сиракузы и посвятил свою жизнь научным изысканиям в разных областях знания.
Архимед был математиком из математиков. Согласно Плутарху, он, «считая сооружение машин и вообще всякое искусство, сопричастное повседневным нуждам, низменным и грубым, все свое рвение обратил на такие занятия, в которых красота и совершенство пребывают не смешанными с потребностями жизни» (здесь и далее пер. С. Маркиша). Увлечение абстрактной математикой и поглощенность ею выходили далеко за рамки восторга, с которым относились к этой науке другие ученые. Вернемся к Плутарху.