litbaza книги онлайнРазная литератураПрирода космических тел Солнечной системы - Дмитрий Николаевич Тимофеев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 10 11 12 13 14 15 16 17 18 ... 20
Перейти на страницу:
class="p1">С поднятием температуры до достижения значения, при котором энергия теплового движения частиц достигает энергии химических связей, происходит распад пород в атомарное состояние. Такой процесс начался в архее и образовал зарождающиеся ядро Земли и мантию, с образованием границы, где протекают реакции распада.

В процессе распада вещество мантии, имеющее часто сложный состав, разделяется на две основные фракции.  Легкую фракцию, состоящую из веществ со сравнительно малой плотностью атомов, которая поднимается вверх через слои мантийного вещества, образуя столбы дистиллированного (деплетированного) вещества, очищенные от включений более плотных атомов и тяжелую фракцию, которая состоит из веществ со сравнительно большой плотностью атомов. Тяжелая фракция опускается в ядро Земли и разделяется на отдельные виды атомов, распределяясь по соответствующим слоям.  В настоящее время граница раздела находится на глубине примерно 2900 км от поверхности Земли, где давление составляет примерно 1.5 миллиона атмосфер. Известно, что ряд веществ может находиться в состоянии элементов в нормальных условиях (ртуть, золото, инертные газы…). С возрастанием температуры перечень таких элементов увеличивается. Для этих элементов нет препятствий под высоким давлением переходить в состояние кристаллического газа даже не на границе между мантией и ядром. Эти элементы при определенных для них температурных условиях переходят в плотное состояние кристаллического газа в объеме мантии, что приводит к выпадению их из мантии в ядро (для тяжелых элементов) раньше, чем до них дойдет горячий фронт ядра Земли. На поверхности ядра Земли при температуре 4000—5000°С происходит распад самых термостойких здесь мантийных соединений. Образовавшиеся при распаде тяжелые атомарные элементарные вещества конденсируются в отдельные капли кристаллического газа разного состава по видам элементов, которые погружаются в ядро. По расчетам верхний слой ядра состоит из цинка в состоянии кристаллического газа. Нахождение цинка в жидком состоянии здесь исключено, поскольку он имеет сравнительно невысокую температуру кипения 907°С. Таким образом, все элементы образовавшейся тяжелой фракции, если это не цинк, который просто вливается в верхний слой ядра дождем из капель кристаллического газа, идут через цинковый слой, погружаются через другие слои ядра, находя свои слои для каждого элемента, и вливаются в них. По мере опускания происходит нагревание капель более горячими нижними слоями, через которые они проходят, и вещество их в определенные моменты может перейти в состояние реального газа, что, тем не менее, не позволяет ему и в этом состоянии смешиваться с веществом любых окружающих слоев, кроме своего. Производительность выпадающего дождя, пополняющего массу ядра Земли, в среднем за период его развития составляет (масса ядра, деленная на возраст Земли 1934х1021/4.5х109=429.7х1012 кг/год) порядка 500 миллиардов тонн в год. Если мантия будет разрушаться с такой же скоростью и далее, то раскаленные массы ядра появятся на поверхности Земли через 9.4 миллиарда лет, и вся Земля будет состоять из ядра, как практически из одного ядра состоит в настоящее время Юпитер или Солнце.

Термониз перехода вещества в кристаллический газ

Гипотеза 27

На поверхности Земли в условиях малого давления хорошо известно явление конвекции. Конвекция – это всплытие разогретой массы в среде менее нагретого вещества. Объясняется конвекция тем, что вещество при нагревании расширяется, и плотность его уменьшается. В глубинах Земли, где высокие давления препятствуют тепловому расширению (силы гравитационного сжатия превосходят силы расширения, вызванные кинетической энергией теплового движения частиц), при нагревании может происходить явление погружения более нагретого вещества. В условиях глубин Земли есть два фазовых перехода при нагревании, вызывающих увеличение плотности веществ. Переход в состояние кристаллического газа при температурах разрушения межатомных связей (1000—6000°К) и переход в ионизированное состояние при температурах более 30000°К. Оба эти перехода фазового состояния могут создавать условия для погружения более разогретого вещества в ядре Земли. Явление погружения более разогретого вещества получило название «термониз» [Тимофеев, 2009б].

Термониз – это перемещение разогретого вещества вниз в условиях, когда плотность его из-за разогрева возрастает.

Зонами термониза от перехода вещества в состояние кристаллического газа являются слои элементов верхней части наружного ядра. Одними из веществ в этой зоне, переходящими в состояние кристаллического газа, могут быть H, He, N, O, F, Ne, Cl, Ar. Плотность атомов этих элементов достаточно высокая, и в состоянии близком к состоянию кристаллического газа они вполне могут быть в числе элементов, образующих геосферы в этой зоне. Слои этих веществ образуют тепловой барьер на поверхности ядра.

Слои элементов на границе нижней части верхнего ядра Земли и субъядра являются зонами термониза от перехода вещества в ионизированное состояние.

Плотность атомов при ионизации, а также при дальнейшем увеличении ее степени, существенно возрастает из-за резкого уменьшения их размеров. Очевидно, что вещество при ионизации погружается.

В нормальных условиях явление термониза наблюдается у воды в температурном диапазоне +4—0°С. В этом диапазоне при нагревании у воды увеличивается плотность, и более нагретая вода погружается вниз. На рис. 23 показан термониз (тепловой барьер) перехода в кристаллический газ на границе мантии и ядра Земли. Также образно, в виде языков пламени, направленных в центр, изображена картина термониза ионизированного вещества в ядре Земли.

Рис. 23. Ядро Земли. Термониз. 1 – уран 238 и ионизированные продукты ядерных реакций; 2 – слой F (уран 235, 233); 3 —слои наружного ядра Земли; 4 – термониз перехода в кристаллический газ (граница между ядром Земли и мантией)

Математически процесс может быть описан формулой:

К – коэффициент термониза.

При К <0 происходит процесс конвекции, при К> 0 – процесс термониза.

Процессы термониза создают условие для длительного существования твердой стабильной коры Земли при значительных температурах в ее глубинах, иначе бы вся поверхность сейчас была бы раскалена до температур в сотни градусов, и никакая жизнь на Земле не была бы возможна.

Перемещение веществ, вызванное α- и β-распадами изотопов

Гипотеза 28

Процессы α- и β-распадов изотопов получил свое начало сразу после образования элементов, как только произошел взрыв нейтронной звезды. Еще не сконденсировался газ от раскаленных продуктов взрыва, а распад уже сильно шел, постепенно ослабевая по мере уменьшения содержания короткоживущих изотопов. При взрыве образовалось примерно 1200 видов ядер, большая часть из которых распалась к настоящему времени полностью. От всего многообразия радиоактивных изотопов до настоящего времени в природе осталось около 50. Из них основные долгоживущие: U238 (Т1/2=4.507х109 лет), U235 (Т1/2=7.13х108 лет), Th232 (Т1/2=1.45х1010 лет), К40 (Т1/2= 1.32х1010лет), которые распадаются и в настоящее время. Короткоживущие изотопы в настоящее время в природе все-таки имеются благодаря тому, что они постоянно образуются в результате целого ряда протекающих ядерных реакций от распада долгоживущих изотопов или космического излучения. Кроме того, короткоживущие изотопы образуются сейчас от реакций цепного ядерного деления U235, U233, Рu239как в ядре Земли, так и в ядерных реакциях на АЭС.

Распад природных радиоактивных изотопов образует радиоактивные семейства-цепочки атомных ядер, каждое из которых возникает из предыдущего в результате α- или β-распадов. Цепочка распадов продолжается до тех пор, пока не образуется стабильное ядро.

Так U238, пройдя через четырнадцать ступеней распада, среди которых есть и радий Ra226 (Т1/2 =1622 года), и радон Rn222 (Т1/2 =3.825 дней), превращается в стабильный свинец Pb206.

Другие родоначальники – U235, Th232, а возможно и нептуний Np237 – имеют свои радиоактивные семейства из других изотопов.

Цепочки α- или β-распадов образуют и осколки цепного деления ядер U233, Рu239, U235. Осколки от цепного деления имеют намного меньше атомные массы, чем при естественном распаде. Состав осколков показан на рис.11. Осколки существенно перегружены нейтронами,

1 ... 10 11 12 13 14 15 16 17 18 ... 20
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?