Шрифт:
Интервал:
Закладка:
Из основных представлений современной физики следует, что потенциальная энергия молекул газа в любом химическом или активном состоянии меньше той, которую нужно затратить на диссоциацию и ионизацию молекул. Это дает возможность количественно установить верхний предел энергии, которая может быть запасена в газовом шаре, заполненном воздухом и размерами с шаровую молнию. С другой стороны, можно количественно оценить интенсивность излучения с ее поверхности. Такого рода прикидочные вычисления показывают, что верхний предел времени высвечивания получается много меньше действительно наблюдаемого у шаровых молний. Этот вывод теперь также подтверждается опытным путем из опубликованных данных (3) о времени высвечивания облака после ядерного взрыва. Такое облако сразу после взрыва, несомненно, является полностью ионизованной массой газа, и поэтому его можно рассматривать как заключающее в себе предельный запас потенциальной энергии. Поэтому, казалось бы, оно должно высвечиваться за время меньшее, чем наиболее длительно существующая шаровая молния, но на самом деле этого нет. Поскольку запасенная энергия облака пропорциональна объему (d3), а испускание поверхности ~ d2, то время высвечивания энергии из шара будет пропорционально d, его линейному размеру. Полностью облако ядерного взрыва, при диаметре d, равном 150 м, высвечивается за время меньшее, чем 10 сек. (3), так что шар размером в 10 см высветится за время меньшее, чем 0,01 сек. Но на самом деле, как указывается в литературе, шаровая молния таких размеров чаще всего существует несколько секунд, а иногда даже минуту (1, 2). Таким образом, если в природе не существует источников энергии, еще нам не известных, то на основании закона сохранения энергии приходится принять, что во время свечения к шаровой молнии непрерывно подводится энергия, и мы вынуждены искать этот источник энергии вне объема шаровой молнии. Поскольку шаровая молния обычно наблюдается "висящей" в воздухе, непосредственно не соприкасаясь с проводником, то наиболее естественный, и, по-видимому, единственный способ подвода энергии — это поглощение ею приходящих извне интенсивных радиоволн. Примем такое предположение за рабочую гипотезу и посмотрим, как согласуются с ней наиболее характерные из описанных явлении, сопровождающих шаровую молнию (1, 2, 4). Если сравнить поведение шаровой молнии со светящимся облаком, оставшимся после ядерного взрыва, то бросается в глаза следующая существенная разница. После своего возникновения облако ядерного взрыва непрерывно растет и бесшумно тухнет. Шаровая молния в продолжение всего времени свечения остается постоянных размеров и часто пропадает со взрывом. Облако ядерного взрыва, будучи наполнено горячими газами с малой плотностью, всплывает в воздух и поэтому двигается только вверх. Шаровая молния иногда стоит неподвижно, иногда движется, но это движение не имеет предпочтительного направления по отношению к земле и не определяется направлением ветра. Теперь покажем, что эта характерная разница хорошо объясняется выдвинутой гипотезой.
Известно, что эффективное поглощение электромагнитных колебаний ионизованного газового облака-плазмы может происходить только при резонансе, когда собственный период электромагнитных колебаний плазмы совпадет с периодом поглощаемого излучения. При тех интенсивностях ионизации, которые ответственны за яркое свечение шара молнии, резонансные условия всецело определяются его наружными размерами. Если считать, что поглощаемая частота соответствует собственным колебаниям сферы, то нужно, чтобы длина l поглощаемой волны была приблизительно равна четырем диаметрам шаровой молнии (точнее, l == 3,65 d). Если в том же объеме ионизация газа слаба, то, как известно, тогда период колебаний плазмы в основном определяется степенью ионизации, причем соответствующая резонансная длина волны всегда будет больше, чем та, которая определяется размерами ионизованного объема и, как мы указали, равна 3,65 d. При возникновении шаровой молнии механизм поглощения можно себе представить так: сперва имеется небольшой по сравнению с (n/6)d**3 объем плазмы, но если ионизация его будет слаба, то все же резонанс с волной длины l = 3,65 d будет возможен и произойдет эффективное поглощение радиоволн. Благодаря этому ионизация будет расти, а с ней и начальный объем сферы, пока она не достигнет диаметра d. Тогда резонансный характер процесса поглощения будет определяться только формой, и это приведет к тому, что размер сферы шаровой молнии станет устойчивым.
Действительно, предположим, что интенсивность поглощаемых колебаний увеличивается, тогда температура ионизованного газа несколько повысится и сфера раздуется, но такое увеличение выведет ее из резонанса и поглощение электромагнитных колебаний уменьшится, сфера остынет и вернется к размерам, близким к резонансным.
Таким образом можно объяснить, почему наблюдаемый диаметр шаровой молнии в процессе свечения остается постоянным. Размеры наблюдаемых шаровых молний лежат в интервале от 1 см до 27 м (4). Согласно нашей гипотезе, эти величины, помноженные на четыре, дадут тот диапазон волн, который ответственен в природе за создание шаровых молний. Наиболее часто наблюдаемым диаметром шаровых молний от 10 до 20 см (1) соответствуют длины волн от 35 до 70 см. Местами, наиболее благоприятными для образования шаровых молний, очевидно, будут области, где радиоволны достигают наибольшей интенсивности. Такие места будут соответствовать пучностям напряжения, которые получаются при разнообразных возможных интерференционных явлениях. Благодаря повышенному напряжению электрического поля в пучностях, их положение будет фиксировать возможные места шаровой молнии. Такой механизм приводит к тому, что шаровая молния будет передвигаться с передвижением пучности, независимо от направления ветра или конвекционных потоков воздуха (1. 2).
Как возможный пример такого фиксированного положения шаровой молнии рассмотрим случай, когда радиоволны падают на проводящую поверхность земли и отражаются. Тогда благодаря интерференции образуются стоячие волны и на расстояниях, равных 1, длине волны, помноженной на 0,25; 0,75; 1,25; 1,75 и т. д., будут образовываться неподвижные в пространстве пучности, в которых напряжение электрического поля удваивается по сравнению с падающей волной. Вблизи этих поверхностей благодаря повышенному напряжению будут благоприятные условия, как для создания начального пробоя, так и для дальнейшего развития и поддержания ионизации в облаке, образующем шаровую молнию. Таким образом, поглощение электромагнитных колебаний ионизованным газом может происходить только в определенных поверхностях, параллельных рельефу земли. Это и будет фиксировать в пространстве положение шаровой молнии. Такой механизм объясняет, почему шаровая молния обычно создается на небольшом расстоянии от земли и часто передвигается в горизонтальных плоскостях. При этом наименьшее расстояние центра шаровой молнии до проводящей поверхности будет равно 1/4 длины волны и, следовательно, зазор между отражающей поверхностью и краем шара должен быть примерно равен его радиусу.
При интенсивных колебаниях вполне возможно, чтобы в ряде пучностей образовывались отдельные шаровые молнии, на расстоянии полудлины волны друг от друга. Такие цепочки из шаровых молний наблюдаются, они носят название "четочных" молний и даже были засняты (2). Наша гипотеза также может объяснить, почему иногда шаровая молния пропадает со взрывом, который не причиняет разрушений (1, 2). Когда подвод мощности внезапно прекращается, то при малых