Шрифт:
Интервал:
Закладка:
В конце концов, было доказано, что модель островной Вселенной верна. Теперь мы видим, что наша Галактика и в самом деле не находится в центре Вселенной: это всего лишь одно из миллиардов звездных скоплений, причем галактики разделены расстояниями, намного превышающими их размер. Но как мы поняли это эмпирически?
Основное доказательство было получено позже, в 1920-х годах, когда астрономы изучали особый тип звезды в спиральной туманности в созвездии Андромеды. Этот объект также известен как M31, поскольку он был записан под номером 31 в каталоге туманностей и звездных скоплений, составленном в XVIII веке астрономом Шарлем Мессье. В безлунную ясную ночь M31, или галактику Андромеда, можно увидеть в бинокль или даже невооруженным глазом как вытянутое пятно слабого света. Находящиеся в этой галактике пульсирующие переменные звезды – цефеиды – отличаются от большинства других звезд тем, что они пульсируют с изменением светимости, увеличиваясь примерно в два раза в течение регулярного цикла. Цефеиды названы в честь дельты Цефея – четвертой по яркости звезды в созвездии Цефея и одной из первых в своем роде, обнаруженной в XVIII веке.
Цефеиды пульсируют, потому что эти звезды расширяются и сжимаются. Непрозрачность газа в фотосфере звезды (внешних слоях газа) определяет, сколько света, генерируемого ядерным синтезом в ядре, может фактически уйти от звезды, а не отразиться от газа через газ в процессе поглощения и переиз-лучения. Непрозрачность фотосферы связана с давлением газа: во время цикла расширения и сжатия происходит систематическое изменение плотности газа, давления и, следовательно, общего количества испускаемых фотонов. То, что мы видим, – это регулярное изменение светимости цефеиды, когда она становится то ярче, то тусклее.
Типичная продолжительность цикла пульсации цефеиды чрезвычайно коротка в астрономических терминах. На самом деле эти изменения вполне можно соотносить с человеческой шкалой времени: они могут длиться от нескольких дней до нескольких недель. Если вам интересно, то поэкспериментировать можно даже с помощью небольшого телескопа, измеряя яркость цефеид от ночи к ночи и отслеживая их световые колебания. Пожалуй, в Северном полушарии проще всего наблюдать за одной из самых известных цефеид – Полярной звездой.
Не так давно было установлено, что цикл цефеиды дает очень полезную корреляцию: существует тесная связь между длиной цикла пульсации отдельной звезды (временем между пиками яркости) и ее средней светимостью. Цефеиды с более длинными периодами ярче своих «коллег» с более короткими. Это открытие сделала американский астроном Генриетта Суон Ливитт, которая опубликовала свои наблюдения за цефеидами Большого Магелланова Облака в 1912 году.
Почему соотношение «период – светимость» так полезно для нас? Если мы знаем внутреннюю яркость объекта (общее количество энергии, которое он излучает каждую секунду), то можем сравнить эти показатели с его видимой яркостью на небе (потоком, который мы измеряем с помощью телескопа) и таким образом определить, как далеко он находится. Так как наблюдаемая яркость источника падает согласно хорошо известному закону обратных квадратов, если у вас есть данные о внутренней светимости объекта, то есть об общем количестве выделяемой энергии, вы можете, основываясь на законе обратных квадратов, посчитать расстояние до них. Примерно в то же время, когда Генриетта Суон Ливитт сделала свое открытие, датский астроном Эйнар Герцшпрунг откалибровал отношение периодичности к свету, используя расстояния до цефеид в Млечном Пути, для которых он измерил параллакс, связав тем самым технику определения расстояния до цефеид с техникой измерения независимого расстояния. Точное измерение физических расстояний – одна из самых сложных проблем в астрономии, и поэтому мы называем небесные тела вроде цефеид стандартными свечами, потому что они представляют собой объекты, светимость которых хорошо откалибрована.
Эдвин Хаббл и Милтон Хьюмасон обнаружили, что цефеиды в M31 расположены на чрезвычайно большом расстоянии от нас и должны лежать далеко за пределами Млечного Пути. Открытие этих далеких цефеид стало значительным аргументом в спорах об островной Вселенной. M31, безусловно, находится за пределами Млечного Пути – и при этом на очень большом расстоянии от нашей Галактики. Если правильно настроить изображение, позволяющее уловить слабое излучение протяженного звездного диска галактики, то можно заметить, что с точки зрения размещения на небе M31 больше, чем полная Луна. На самом же деле она находится примерно в миллион раз дальше, чем ближайшая звезда. Если бы звездный диск Млечного Пути уместился на трассе кольцевой автомобильной дороги вокруг Лондона, Андромеда оказалась бы где-нибудь под Москвой. Так мы открываем для себя внегалактическую астрономию, точнее, исследования в этой сфере. Смотря на самые глубокие оптические изображения М31 и учитывая все, что мы знаем о внешних галактиках, сейчас кажется очевидным, что эта туманность – автономная и далекая звездная система. Однако это было совсем не так очевидно в прошлом, и нельзя недооценивать, насколько важен этот прорыв в нашем понимании Вселенной. Как и со всеми теориями и моделями Вселенной, прошлыми и современными, мы постоянно стремимся эмпирически проверить, подтвердить и опровергнуть наши гипотезы независимо от того, что говорит нам внутренний инстинкт.
Когда астрономы начали исследовать все больше ближайших галактик – те из них, что расположены достаточно близко к Млечному Пути и, соответственно, достаточно ярки, чтобы их можно было обнаружить с помощью телескопов начала XX века, – было открыто еще более удивительное явление. Оказалось, что свет от далеких галактик более красный, чем ожидалось. И я говорю не о смутной разнице в оттенках: весь свет, излучаемый далекой галактикой, систематически сдвигался к более длинным, то есть более красным, волнам. Отчетливее всего этот эффект проявляется в спектрах галактик, являющихся астрономическим эквивалентом отпечатков пальцев.
Сила спектроскопии
Спектр – это просто измерение количества энергии, излучаемой светящимся объектом, будь то пламя свечи или галактика, на разных длинах волн (или, что то же самое, частотах) света. Например, если мы возьмем свет от Солнца и разделим его через призму, то обнаружим радугу – характерный «континуум» света – с интенсивностью, которая достигает пика на длине волны около 500 нм, что соответствует желтоватому свету. Солнце испускает излучение, которое не входит в видимую для человека часть спектра, подобно ультрафиолету и инфракрасному излучению, но здесь оно слабее. Спектр тоже не совсем гладкий. Яркая непрерывная эмиссия отличается тысячами темных пятен на определенных длинах волн – это линии поглощения, вызванные особыми элементами на Солнце, которые поглощают фотоны очень специфической энергии (и, следовательно, очень специфических частот). Эти темные линии называются линиями Фраунгофера в честь немецкого оптика XIX века Йозефа фон Фраунгофера.
Этот УФ-снимок, сделанный спутником GALEX, дал нам более четкое представление о галактике Андромеда, также известной как М31. На изображении видна сложная структура галактики со спиральными рукавами, окружающими ее центр. M31 мало чем отличается от Млечного Пути. Телескопы, чувствительные к ультрафиолетовым фотонам, могут обнаружить излучение молодых массивных звезд, которые распространены в богатых газом дисках спиральных галактик, где формируются новые звезды, – именно поэтому на снимке видны спиральные рукава. Ультрафиолетовый свет не может пройти через атмосферу Земли, поэтому такие наблюдения должны вестись из космоса