litbaza книги онлайнРазная литератураИнтернет-журнал "Домашняя лаборатория", 2008 №2 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 181 182 183 184 185 186 187 188 189 ... 279
Перейти на страницу:
при подключении источника питания неправильной полярности. Конденсаторы С1-С3 необходимы для фильтрации напряжения источника питания и для защиты от проникновения помех по цепям питания в схему блока управления.

Тактовый генератор служит источником импульсов для реверсивного счетчика и выполнен по стандартной схеме мультивибратора на двух инверторах DD1.1 и DD1.2. Элемент DD1.3 является буферным. К его выходу подключен индикаторный светодиод HL1 "Такт", который используется для визуального наблюдения за частотой импульсов тактового генератора. Импульсы с выхода тактового генератора также поступают на один из входов "+1" или "-1" реверсивного счетчика на микросхеме DD2. Выбор входа осуществляется перестановкой положения перемычки S1 "Направление", расположенной на плате блока управления. От положения этой перемычки зависит направление вращения ШД в автономном режиме работы установки.

На микросхемах DD2-DD4 выполнен реверсивный счетчик-дешифратор. DD2 представляет собой четырехразрядный реверсивный двоичный счетчик со входами предварительной записи. Данные входы в приведенной схеме не используются. Слово на выходах счетчика инкрементируется или декрементируется по фронту импульса, пришедшего на вход "+1" или "-1". При этом на другом входе должен быть зафиксирован уровень лог. 1. Начальное состояние счетчика не имеет значения, поэтому вход начальной установки R не используется.

Двоичный код с двух младших разрядов счетчика подается на входы микросхемы DD3. Эта микросхема является сдвоенным дешифратором-демультиплексором, преобразующим входной двоичный код в выходной десятичный. Используется только один из встроенных в нее дешифраторов (нижний на схеме). На входы разрешения этого дешифратора Е и С2 постоянно подается активный уровень лог. 0.

Выходы микросхемы DD3 — инверсные. Сигнал с этих выходов следует на входы преобразователя кодов, выполненного на микросхеме DD4, содержащей четыре двухвходовых логических элемента И-НЕ. Такая схема преобразователя позволила организовать требуемые для обеспечения работы ШД в полношаговом двухфазном режиме последовательности импульсов.

Мультиплексор построен с использованием микросхемы сдвоенного шинного усилителя-формирователя DD5. Назначение мультиплексора — переключение потоков данных с выхода преобразователя (в автономном режиме работы, входы А на рис. 18) и интерфейса Centronics (в режиме управления от компьютера, входы В, рис. 18).

Выходы обоих усилителей-формирователей В0-В3 объединены вместе и подключены ко входам ключей, управляющих обмотками ШД. Выходы могут быть переведены в отключенное Z-состояние путем подачи сигнала с уровнем лог. 1 на вход разрешения Е0 каждого формирователя. Входы Е0 DD5.1 и DD5.2 объединены через инвертор DD1.4. На вход этого инвертора (и, соответственно, на вход Е0 DD5.2) подключена линия данных D4 интерфейса Centronics. Подача уровня лог. 0 на эту линию приводит к отключению схем блока управления от ключей ШД и подключению к этим ключам линий D0-D3 интерфейса Centronics.

Принципиальная схема блока ключей приведена на рис. 20. Блок состоит из четырех одинаковых ключей, выполненных на транзисторах VT1-VT4. Используются мощные составные транзисторы КТ8131А, что позволило обойтись без использования дополнительных каскадов усиления управляющих сигналов.

Обмотки ШД M1 включены в цепь коллектора каждого из транзисторов ключей. Для защиты от выбросов ЭДС самоиндукции обмотки шунтируются обратносмещенными импульсными диодами VD1-VD4, обеспечивающими шунтирование ЭДС самоиндукции, возникающей в моменты размыкания ключа. Параллельно этим диодам включены индикаторные светодиоды HL1-HL4, позволяющие контролировать наличие напряжения на обмотках Ф1-Ф4 шагового двигателя.

Рис. 19. Принципиальная схема блока управления

Рис. 20. Принципиальная схема блока ключей

Для включения контроллера необходимо:

— подключить источник питания установки напряжением 15–24 В к гнездам "+" и на плате блока управления соблюдая полярность;

— подключить кабель интерфейса Centronics к LPT-порту персонального компьютера;

— подключить шаговый двигатель к разъему на плате блока ключей;

— включить источник питания установки;

— включить питание компьютера.

Внимание: все подключения и отключения выполняются только при выключенных компьютере и источнике питания установки. Несоблюдение данного требования может привести к выходу компьютера и (или) блока управления установки из строя.

ЗАДАНИЯ К РАБОТЕ

1. Изучите теоретический материал, посвященный шаговым двигателям, и ответьте на контрольные вопросы, приведенные в конце работы.

2. Изучите устройство и принципы программирования параллельного порта Centronics (см. Приложение). Ответьте на контрольные вопросы, приведенные в конце Приложения.

3. Изучите описание лабораторной установки, ее электрическую схему.

4. Включите лабораторную установку, переведя ее в автономный режим работы (D4 = 1, кабель интерфейса не подключен к адаптеру LPT-порта компьютера).

Напряжение питания установки +15 В. С помощью двухлучевого осциллографа исследуйте используемый в автономном режиме способ формирования импульсов на обмотках ШД. На основании изученного теоретического материала охарактеризуйте этот способ. Определите число шагов ШД, требуемое для поворота вала на 360 градусов.

5. Подключите установку к параллельному порту Centronics персонального компьютера. Используя компилятор языка Паскаль напишите программу, реализующую постоянное вращение ШД в полношаговом однофазном режиме со скоростью 5 шагов в секунду по часовой стрелке без разгона.

6. Выполните задание 5, реализуя вращение вала двигателя на заданное пользователем количество шагов в полношаговом двухфазном режиме против часовой стрелки.

7. Напишите программу, выполняющую вращение вала двигателя в полушаговом режиме против часовой стрелки на 100 шагов и затем на 200 шагов в обратном направлении со скоростью 30 шагов в секунду.

8. Напишите универсальную подпрограмму, выполняющую поворот вала ШД на заданное количество шагов с плавным разгоном до заданной скорости в полушаговом режиме, считая, что частота приемистости используемого двигателя равна 50 Гц. Параметры вращения (количество шагов, скорость, направление) задаются в виде параметров подпрограммы.

9. Плавно увеличивая скорость вращения вала ненагруженного и нагруженного ШД, определите резонансные скорости ШД, на которых работа носит неустойчивый характер.

10. Постройте зависимость максимальной скорости вращения (в шагах в секунду) ненагруженного и нагруженного ШД от напряжения источника питания (в пределах 15–24 В). Объясните полученную зависимость.

СПИСОК КОНТРОЛЬНЫХ ВОПРОСОВ

1. Какое устройство называют шаговым двигателем?

2. Где применяются шаговые двигатели?

3. Перечислите достоинства и недостатки ШД.

4. Какие виды шаговых двигателей Вы знаете?

5. Как устроен ШД с переменным магнитным сопротивлением?

6. Как устроен ШД с постоянными магнитами?

7. Какие шаговые двигатели называются гибридными?

8. В чем различие между биполярными и униполярными ШД?

9. Как использовать униполярный ШД в биполярном режиме?

10. Чем определяется момент, создаваемый ШД?

11. Какие способы управления фазами ШД Вам известны?

12. Как реализуется полношаговый режим работы ШД?

13. Как реализуется полушаговый режим работы ШД?

14. Что такое микрошаговый режим работы? В чем его преимущества и недостатки?

15. Как обеспечить вращение ШД с постоянной скоростью?

16. Что такое мертвые зоны ШД?

17. Чем определяется форма тока в обмотках двигателя?

18. Что такое частота приемистости ШД?

19. Как осуществляется разгон шагового двигателя?

20. Какие причины приводят к возникновению резонанса в шаговых двигателях?

21. Какими средствами необходимо бороться с явлением резонанса в ШД?

1 ... 181 182 183 184 185 186 187 188 189 ... 279
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?