Шрифт:
Интервал:
Закладка:
Рассмотрим сначала набор целых чисел, имеющихся в нашем распоряжении {1, 2, 3, 4, 5, 6, 7, 8, 9}. Каждое подмножество этих цифр, за исключением пустого, должно давать одно из искомых чисел. Например, подмножество {3, 5, 7, 9} дает число 3579. Вопрос в том, сколько таких подмножеств можно выделить в нашем ряду из девяти цифр. Их количество равно 29 = 512. Вместе с тем сюда вошло пустое подмножество, которое необходимо вычесть. Таким образом, мы получаем 29 — 1 = 511 подмножеств из 9 цифр, каждое из которых дает число, где в соответствии с условием задачи, цифры могут располагаться в порядке возрастания.
На рис. 4.4 показан равнобедренный треугольник с бесконечным рядом окружностей, каждая из которых касается двух равных сторон треугольника и соседних окружностей, а нижняя окружность касается основания треугольника. Стороны равнобедренного треугольника равны 13, 13 и 10. Чему равна сумма длин этих окружностей?
Занудный по определению подход предполагает вычисление длины каждой окружности с последующим определением суммы их длин. Подсчеты в этом случае очень трудоемки, но при тщательном выполнении они могут дать правильный ответ.
Воспользуемся стратегией рассмотрения задачи с другой точки зрения. С помощью теоремы Пифагора находим, что высота равнобедренного треугольника равна 12. Заметим, что сумма диаметров бесконечного числа окружностей равна высоте равнобедренного треугольника. Таким образом, сумма длин окружностей равна сумме диаметров, умноженной на π, т. е. 12π.
Чему равен наименьший неотрицательный остаток при делении 227 на 123?
Как правило, при решении этой задачи люди тратят кучу времени на определение значения числа 227, а потом делят результат на 123.
Мы подойдем к решению задачи с другой точки зрения. Вместо развертывания 227 в число без степени разложим его на числа в степени:
227 = (27) (117) = (27) (112) (112) (112) (11) = (123 + 5) (123–2) (123–2) (123–2) (11).
Теперь вспомним, что произведение двух двучленов вида 123 + s и 123 + t можно представить как 123k + st:
(123 + s) (123 + t) = 1232 + 123s + 123t + st = 123 (123 + s + t) + st = 123k + st.
Таким образом, мы получаем:
123n — 440 = 123n − 492 + 52 = 123 (n − 4) + 52.
При делении числа 227 на 123 остаток равен 52.
Во время футбольного матча команды получают 2 очка за сейфти, 3 очка за гол в ворота и 7 очков за тачдаун. Если отбросить 2 очка за сейфти, то команды смогут получать лишь по 3 и по 7 очков. Каково максимальное значение счета, которое нельзя получить в этом матче?
Очевидный подход — выписывать все возможные значения счета до тех пор, пока не обнаружится максимальное значение, которое невозможно получить. Такой метод, однако, не дает уверенности в том, что не существует более высокое значение.
В этом случае можно воспользоваться стратегией принятия другой точки зрения. Вместо поисков значений счета, которые нельзя получить, определим значения, которые можно получить. Счет, который можно набрать, зарабатывая очки на голах в ворота, составляет 3, 6, 9, 12, 15, … Счет, который можно заработать на очках за тачдаун, составляет 7, 14, 21, 28, … Другие значения получаются в результате прибавления очков за гол в ворота или за тачдаун к предыдущему счету. Таким образом, значения, которые нельзя получить, составляют 2, 4, 5, 8, 11. Любой счет, начиная с 12, является доступным, как видно из следующего:
Таким образом, наивысший счет, который нельзя получить, равен 11.
Интересно отметить, что эта ситуация описывается чисто математически.
Наивысший счет, который нельзя получить при использовании двух простых чисел (a и b), равен произведению этих чисел за вычетом их суммы. В нашем случае это (7 × 3) − (7 + 3) = 11.
Число 6! (читается как «шесть факториал») равно произведению 6 × 5 × 4 × 3 × 2 × 1 = 720. Найдите значение
Обычно так и подмывает выписать все факториалы, взять калькулятор или компьютер и вычислить фактические результаты. Это, конечно, позволит получить ответ, но потребует массы арифметических расчетов.
Давайте применим стратегию принятия другой точки зрения. Каждый из факториалов можно представить как число, кратное 98! Например, 100! можно записать как 100 × 99 × 98! а 99! — как 99 × 98! В результате мы получаем:
что является ответом этой задачи.
При делении 450 на нечетное число частное представляет собой простое число без остатка. Чему равно нечетное число?