Шрифт:
Интервал:
Закладка:
На рис. 5.3 представлен прямоугольник ABCD со сторонами длиной 8 см и 12 см. Найдите площадь закрашенной области прямоугольника.
Обычно на задачу смотрят с другой точки зрения и вместо определения площади закрашенной области, найти которую требуется по условиям, определяют площадь незакрашенной области и вычитают ее из площади прямоугольника. Незакрашенный треугольник с основанием AB = 12 см и высотой BC = 8 см, имеет площадь Площадь прямоугольника — это 12 × 8 = 96 см2. Таким образом, площадь закрашенной области равна 96–48 = 48 см2.
Другой подход с использованием той же стратегии выглядит следующим образом. Поскольку точное положение точки E не определено, рассмотрим экстремальный случай, когда точка E совпадает с точкой C, как показано на рис. 5.4.
AC — диагональ прямоугольника, которая делит его пополам. Таким образом, закрашенная область занимает точно половину площади прямоугольника, и ее площадь равна 48 см2.
Следует заметить, что тот же прием можно использовать и при замене прямоугольника ABCD на параллелограмм. В первый момент такая задача может показаться сложной, однако она решается аналогичным образом.
В офисе директора средней школы им. Джорджа Вашингтона висят 50 почтовых ящиков для учителей. Однажды почтальон принес 151 письмо для учителей. Какое наибольшее число писем может гарантированно получит каждый из учителей?
Нередко человек, столкнувшись с задачей такого рода, действует наугад и не знает с чего начать. Иногда результат приносит метод проб и ошибок, но убедительного решения он точно не дает.
Для решения задач такого рода рекомендуется применять анализ экстремумов. Понятно, что один учитель может получить все письма, однако это не гарантировано. Более реальную оценку ситуации дает экстремальная ситуация, когда письма распределяются предельно равномерно. В этом случае каждый учитель получит по 3 письма за исключением одного, которому попадет еще 151-е письмо. Таким образом, четыре письма — это наибольшее из того, что один учитель может гарантированно получить.
Точка M лежит на середине стороны AB ΔABC. Точка P может находиться в любом месте на отрезке AM (рис. 5.5). Линия, проведенная через точку M параллельно PC, пересекается с BC в точке D. Какую часть площади ΔABC составляет площадь ΔBDP?
Площадь ΔBMC равна половине площади ΔABC (в силу того, что медиана делит треугольник на две равные части). Площадь ΔBMC = площадь ΔBMD + площадь ΔCMD = площадь ΔBMD + площадь ΔMPD, которая равна площади площади ΔABC. Это следует из того, что треугольники, вершины которых лежат на линии, параллельной общему основанию, имеют равные площади.
Решение этой задачи значительно упрощается при использовании стратегии анализа экстремальных ситуаций. Поместим точку P в экстремальную позицию так, чтобы она совпадала с точкой M или точкой A. Допустим, точка P совпадает с точкой A. Обратите внимание на то, что по мере смещения точки P вдоль BA в направлении точки A линия MD, которая должна оставаться параллельной PC, смещается так, что D приближается к средней точке линии BC. В конечном положении точки D линия AD становится медианой ΔABC. Поскольку медиана делит треугольник на два треугольника с равными площадями, площадь ΔPBD равна половине площади ΔABC.
Данное решение с помощью стратегии анализа экстремальных ситуаций ясно показывает важность отслеживания всех перемещений по мере смещения точки в предельное положение.
Два конгруэнтных квадрата, длина стороны которых равна 4 см, размещены так, что вершина одного из них находится в центре другого. Чему равно наименьшее значение площади пересекающейся части (рис. 5.6)?
Наиболее очевидный прием — построить два квадрата. Некоторые даже вычерчивают их в масштабе и пытаются измерить искомую площадь. Поскольку фигура получается неправильной, измерение ее площади может оказаться сложным.
Другой подход — провести несколько вспомогательных линий, например линии BM и CM. Несложно доказать, что два треугольника BSM и CTM конгруэнтны (конгруэнтность по двум углам и стороне) (см. рис. 5.7). Четырехугольник SCTM равен по площади треугольнику BCM, поскольку площадь треугольника добавляется к площади двух треугольников, которые, как мы доказали, являются конгруэнтными.
Поскольку ориентация квадратов не определена в условиях задачи, их можно разместить так, как нам захочется, лишь бы вершина одного находилась в центре другого. Обратимся к нашей стратегии анализа экстремальных ситуаций. Можно разместить квадраты так, как показано на рис. 5.8, где стороны этих фигур взаимно перпендикулярны.