Шрифт:
Интервал:
Закладка:
Возможно, нам не стоит слишком сильно удивляться росту и популярности пользовательского контента: в конце концов, мы, люди, любим делиться и взаимодействовать. Куда более удивительным кажется то, что и машинам нравится общаться друг с другом.
Межмашинное взаимодействие (machine-to-machine, M2M) – универсальный термин для описания устройств, обменивающихся данными через интернет. На принципе M2M основана работа Waze; когда приложение активируется на смартфоне, оно начинает постоянно отправлять информацию на серверы Waze без какого-либо вмешательства со стороны человека. Подобным же образом, когда вы ищете недорогие авиабилеты на агрегаторе Kayak, сервис отправляет запросы на серверы различных авиакомпаний, а те отвечают в реальном времени, опять же без какого-либо вмешательства человека. Банкомат, прежде чем выдать нам наличные, уточняет у банка, сколько денег у вас есть на счету; цифровые термометры в фургонах-рефрижераторах постоянно демонстрируют супермаркетам, что товары в дороге не слишком сильно нагреваются; сенсоры на фабриках, где производят полупроводники, передают штаб-квартирам компаний сведения о каждом случае брака; кроме того, в реальном времени и без перерывов происходит бесчисленное количество других типов M2M-коммуникации. Согласно статье, опубликованной в июле 2012 года в газете The New York Times,
совокупный объем бесед между роботами в беспроводных сетях мира… может вскоре превысить объем всей голосовой коммуникации между людьми в этом канале.[100]
Дигитализация практически всего: документов, новостей, музыки, фотографий, видео, карт, новостей в личной жизни, социальных сетей, запросов на получение информации и ответов на них, данных со всевозможных сенсоров и так далее – представляет собой одно из самых важных явлений последних лет. Чем дальше мы входим во вторую эру машин, тем сильнее расширяется и ускоряется дигитализация, и при взгляде на статистику, связанную с ней, у нас просто перехватывает дыхание. Согласно данным компании Cisco Systems, всемирный интернет-трафик увеличился в 12 раз всего за 5 лет с 2006 по 2011 год, достигнув объема в 23,9 экзабайт в месяц.[101]
Экзабайт – огромное число, это примерно 200 тысяч баз данных компьютера Watson. Однако даже этого числа не хватает, чтобы описать общей объем нынешней и будущей дигитализации. Компания IDC, занимающаяся технологическими исследованиями, рассчитала, что в 2012 году в мире имелось 2,7 зеттабайт (2,7 сикстильона байтов) цифровых данных – почти вдвое больше, чем в 2011-м. И все эти данные не просто хранятся на жестких дисках наших компьютеров – они активно перемещаются. По прогнозам Cisco, глобальный трафик по межсестевому протоколу Internet достигнет к 2016 году 1,3 зеттабайт.[102] Для сравнения: это больше 250 миллиардов DVD-дисков с информацией.[103]
Все эти цифры ясно дают понять, что дигитализация создает по-настоящему большие объемы данных. По сути, если такой же быстрый темп роста сохранится и в будущем, нам перестанет хватать метрической системы. Когда в 1991 году на XIX Конференции мер и весов был расширен список приставок для числительных, самой большой из них была «йотта», обозначающая один септильон, или 1024.[104] В нашей «эре зеттабайт» мы находимся всего в одном шаге от этого значения.
Взрывное расширение дигитализации, происходящее в последнее время, производит сильное впечатление, однако насколько оно важно? Действительно ли все эти экза- и зеттабайты цифровых данных полезны? Да, они невероятно полезны. Одна из главных причин, которые позволяют нам считать дигитализацию основной силой, формирующей вторую эру машин, состоит в том, что дигитализация улучшает процесс овладевания знанием. Она обеспечивает легкий доступ к огромным массивам данных, а данные – это источник жизненной силы науки. В данном случае под «наукой» мы понимаем работу над формулированием теорий и гипотез и их последующую проверку (говоря менее формально, мы делаем догадки о том, как что-то работает, а потом проверяем, верны ли они).
Некоторое время назад Эрик предположил, что данные поиска в интернете могут сигнализировать о будущих изменениях в ценах на недвижимость и объеме ее предложения по всей стране. Он исходил из того, что если семейная пара собирается переехать в другой город и купить там дом, то супруги вряд ли надеются провернуть это за пару дней. Они начнут собирать нужную информацию заранее, за несколько месяцев до переезда. В наши дни поиск такой первоначальной информации в интернете происходит постоянно: вы начинаете с того, что вбиваете в поисковой строке «риелтор в Финиксе», «районы Финикса» или просто «цена дом две спальни Финикс».
Чтобы протестировать свою гипотезу, Эрик поинтересовался у Google, может ли он получить данные по статистике поиска. Ему ответили, что никакого специального разрешения здесь не требуется и что эти данные бесплатно доступны онлайн. Эрик и его аспирант Линн Ву (оба – совсем не специалисты в области экономики недвижимости) построили простую статистическую модель, чтобы изучить данные, использующие контент, создаваемый пользователями в ходе их поисковых запросов через Google. Их модель связывала изменения в количестве поисковых запросов определенного рода с последующими изменениями цен на недвижимость и предсказывала, что если количество запросов, подобных описанным выше, сегодня выросло, то цены на дома и объем предложения в Финиксе будут расти в ближайшие три месяца. Оказалось, что эта простая модель вполне работает: фактически она предсказывала уровень продаж на 23,6 % точнее, чем прогнозы, публикуемые экспертами Национальной ассоциации риэлторов.
Подобных же успехов при использовании доступных цифровых данных добиваются и исследователи в других областях. Команда под руководством Руми Чунара из Гарвардской медицинской школы исследовала пути распространения холеры после землетрясения 2010 года на Гаити и выяснила, что информация об эпидемии в «Твиттере» была не менее точной, чем данные официальных отчетов; кроме того, эта информация появлялась как минимум на две недели раньше.[105] Ситарам Асур и Бернардо Губерман из Лаборатории социальной инженерии компании Hewlett Packard обнаружили, что твиты могут также использоваться для прогнозирования дохода от проданных билетов в кинотеатры. По словам ученых, их исследование «наглядно продемонстрировало, как социальные сети отражают коллективную мудрость, которая, если ее направить в нужное русло, может чрезвычайно мощно и точно предсказывать, что произойдет в будущем».[106]