litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 227 228 229 230 231 232 233 234 235 ... 482
Перейти на страницу:
Элманом и Хинтоном. Но в работе Бенджио и его коллег идея словарных эмбеддингов приобрела именно ту форму, в которой она стала основой первой революции в NLP в начале 2010-х гг. Интересно, что разработанная авторами исследования модель стала также одним из первых примеров сетей с перепрыгивающими связями: в одном из рассмотренных вариантов была архитектура с набором связей, напрямую соединяющих слой векторов признаков с выходом сети.

Впрочем, для осуществления решительного прорыва понадобилось ещё десятилетие исследований. Дело в том, что в модели Бенджио векторы признаков выучивались моделью одновременно с остальными слоями сети, из-за чего само обучение модели было связано со значительными вычислительными затратами (потом исследователи использовали общедоступные библиотеки векторов признаков, построенные на базе анализа больших объёмов текстов, но в 2003 г. такой возможности не существовало). В 2003 г. Бенджио и его коллегам пришлось создать специальную параллельную архитектуру для того, чтобы провести эксперименты с такими сравнительно небольшими текстовыми корпусами, как корпус Брауна (Brown Corpus)[2110] из более миллиона слов и корпус APNews, состоявший из новостей агентства Associated Press за 1995 и 1996 гг. (почти 14 млн слов). Для сравнения: на 2 августа 2021 г. суммарный объём текстов англоязычной «Википедии» составлял свыше 3,9 млрд слов[2111], то есть как минимум в 270 раз больше, чем самый большой корпус в экспериментах Бенджио и его коллег. При этом авторы исследования обучали модель на корпусе APNews в течение всего пяти эпох (эпохой обучения обычно называют последовательность шагов обучения, в ходе которой модели будут однократно предъявлены все прецеденты обучающей выборки), что потребовало более трёх недель обучения при использовании 40 CPU. На момент окончания эксперимента модель не демонстрировала никаких признаков переобучения, то есть Бенджио и его коллеги прервали обучение модели, так и не достигнув пределов её возможностей. Кроме того, авторы исследования использовали нейросетевую модель в составе ансамбля с классической n-граммной моделью, то есть фактически учили модель не строить самостоятельный прогноз, а корректировать ошибки n-граммной модели. В итоге авторам удалось на корпусе APNews улучшить результаты лучшей n-граммной модели примерно на 8%. В то же время модель, обучавшаяся в течение двух десятков эпох на корпусе Брауна, смогла показать куда более солидное преимущество — примерно в 24%. Конечно, даже по меркам начала 2000-х гг. корпус Брауна вследствие своего скромного объёма изрядно устарел, в то время среди исследователей наибольшей популярностью пользовались ставшие классическими The Penn Treebank[2112] и British National Corpus[2113], [2114], [2115], [2116]. Возможно, это было одной из причин, по которым работа Бенджио в 2003 г. не стала заметным событием в научном мире.

Интересно, что команда Бенджио использовала случайную инициализацию векторов признаков на старте обучения сети. Авторы работы предположили, что инициализация, основанная на некоторых априорных знаниях о языке, может улучшить результаты. Эта мысль несколько раз повторяется в тексте статьи, причём приводятся даже конкретные идеи по поводу возможных источников такой информации (например, данные из базы WordNet, грамматические признаки и т. д.). Однако авторы работы не пробовали использовать значения векторов, полученные в эксперименте с корпусом Брауна, как стартовые значения для эксперимента с корпусом APNews, то есть идея создания универсальных словарных эмбеддингов для решения широкого спектра задач в области обработки естественного языка на тот момент ещё не овладела умами исследователей.

6.3.3.3 Революция word2vec

Во второй половине 2000-х — начале 2010-х гг. под влиянием работ Бенджио и его коллег был опубликован ряд работ, в которых авторы предлагали различные системы построения универсальных словарных эмбеддингов для решения задач машинного обучения с частичным привлечением учителя [semi-supervised learning] в области обработки естественного языка.

Идея о том, что семантическую информацию о слове можно получить без привлечения учителя, на основе анализа больших неразмеченных наборов текстов, берёт своё начало ещё в XX в. На заре 1950-х гг. благодаря усилиям американского лингвиста Зеллига Харриса, уже упоминавшегося нами в качестве одного из учителей Хомского, приобрела популярность так называемая дистрибутивная гипотеза, которая сегодня обычно формулируется следующим образом: лингвистические единицы, встречающиеся в сходных контекстах, имеют близкие значения. Проще говоря, слова, которые используются и встречаются в одинаковых контекстах, как правило, имеют близкие значения[2117]. В общем, Харрис, как можно заметить, вовсе не был активным противником корпусной лингвистики[2118], в отличие от Хомского, который считал её пустой тратой времени[2119]. Фактически гипотеза Харриса стала развитием идеи, высказанной в афористичной форме другим лингвистом — англичанином Джоном Фёрсом: «Слово характеризуется компанией, в которой оно встречается» [a word is characterized by the company it keeps][2120]. В общем, в отношении слов, как и в отношении людей, в какой-то мере верна поговорка: «Скажи мне, кто твои друзья, и я скажу, кто ты». Возможно, Фёрс и не был первым мыслителем, высказавшим эту идею. Ещё в 1930-е гг. сходные суждения высказывал австрийский философ и логик Людвиг Витгенштейн[2121]. Задолго до появления нейронных сетей лингвисты применяли метод дистрибутивного анализа, изучая распределения слов и символов в текстах, и даже (с середины XX в.) описывали семантику слов в виде контекстных векторов, в которых тому или иному смысловому признаку приписывались некоторые численные оценки. Возникла и развивалась целая область лингвистики, получившая название «дистрибутивная семантика». Её предметом стал анализ семантики элементов языка на основании их распределения в больших массивах лингвистических данных. Появление вычислительной техники, а затем и больших корпусов оцифрованных текстов вывело дистрибутивную семантику на новый уровень — позволило производить эксперименты и проверять гипотезы без использования трудоёмких ручных операций. Исследователями дистрибутивной семантики был разработан ряд инструментов, предназначенных для анализа больших корпусов текстов. Наиболее популярным из них стал Sketch Engine. Эта система была разработана компанией Lexical Computing Limited, созданной в результате сотрудничества лингвиста Адама Килгарриффа и Павла Рыхлого — специалиста в области информатики из Центра обработки естественного языка в Университете Масарика (Masaryk University). Sketch Engine позволяет среди прочего автоматически находить слова со сходной статистикой контекстов (формировать так называемый дистрибутивный тезаурус)[2122]. Корпусными лингвистами были разработаны различные метрики для оценки близости значений слов и математические модели, предназначенные для получения нового знания о языке, позволявшие подтверждать или опровергать различные гипотезы при помощи статистических методов. Появление таких инструментов, как Sketch Engine, позволило лингвистам осуществлять массовую проверку различных гипотез, анализировать происходящие в языке диахронические[2123] изменения, предоставило лексикографам возможность быстрой проверки соответствия словарных определений реальной практике употребления слов.

Дело оставалось за малым — придумать такой алгоритм, который мог

1 ... 227 228 229 230 231 232 233 234 235 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?