litbaza книги онлайнДомашняяКвантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - Николя Жизан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 21 22 23 24 25 26 27 28 29 ... 41
Перейти на страницу:

Сегодня некоторые правительства и крупные компании действительно отправляют человека с кейсом, пристегнутым к запястью, к своим партнерам, с которыми они считают совершенно необходимым вести переписку в чрезвычайно конфиденциальном режиме. Однако нас, простых смертных, вполне устраивает более практичная система, к примеру для покупок в Интернете, где защита основана на математической теории сложности. Эта система шифрования называется криптографией с открытым ключом. Идея заключается в том, что некоторые математические операции, в частности перемножение двух простых чисел, очень просто выполнить на компьютере, но крайне непросто выполнить обратную операцию. В данном случае необходимо разложить результат на множители, то есть найти по произведению два исходных простых числа. Это достаточно долгий процесс даже для мощного компьютера.

Детали здесь не важны, но необходимо понять, что значит «сложное». Школьник назовет задачу сложной, если даже лучшие ученики не могут ее решить. В криптографии с открытым ключом все обстоит примерно так же, только вместо одноклассников нужно взять лучших математиков со всего света, собрать их вместе в удобном месте и пообещать им золотые горы за найденное решение. Если никто из них не преуспеет, то задача поистине сложна. Но «сложная» не значит «невозможная». История математики полна примеров задач, которые не сдавались лучшим умам на протяжении лет, а иногда и столетий, пока в какую-нибудь светлую голову не приходило решение.

Математика устроена так, что, как только вы нашли решение, вы всегда можете его воспроизвести и использовать. Поэтому если когда-нибудь (быть может, завтра) какой-нибудь гениальный человек откроет быстрый способ найти два простых сомножителя по их произведению, все электронные деньги мира мгновенно потеряют ценность. Больше не будет пластиковых карт, онлайн-торговли, межбанковских займов. Это будет катастрофа. Вдобавок, если какая-то компания хранит архив переписки, зашифрованной с открытым ключом, то всю ее можно будет расшифровать и прочесть конфиденциальные сообщения, отправленные несколькими годами, а то и десятилетиями раньше. Поэтому, если вы хотите, чтобы ваши данные оставались конфиденциальными в грядущие десятилетия, вам лучше прямо сейчас прекратить использовать криптографию с открытым ключом.

Вот почему так важно найти результаты, которые возникают истинно случайно и при этом всегда идентичны у Алисы и Боба. Если Алиса и Боб делят запутанную пару фотонов, то они могут в любой момент выдать последовательность результатов, которую тут же можно использовать как шифровальный ключ. А благодаря теореме о невозможности клонирования они могут быть уверены, что никто не сможет получить копию их ключа. Вот так просто – по крайней мере на бумаге.

Квантовая криптография на практике

Как упростить схему игры Белла для практического применения изложенной выше идеи? Мы опять же увидим, как важно понимать фундаментальные физические принципы, чтобы разработать простой, но не слишком упрощенный способ реализации квантовой криптографии.

Первое упрощение. Каждый экспериментальный прогон игры Белла включает три части – это Алиса, Боб и кристалл, который производит запутанные фотоны. Исходя из соображений симметрии, последний обычно помещается посередине. Однако это не очень удобно, поэтому давайте поместим его рядом с Алисой. Таким образом, мы получим уже только две сущности, и теперь мы не обязаны соблюдать запрет на обмен информацией между Алисой и Бобом, обусловленный теорией относительности. В то же время в криптографии мы должны быть уверены, что информация не утекает против нашей воли, так как это уже будет нарушением конфиденциальности.

Второе упрощение. Теперь, когда источник запутанных пар фотонов находится у Алисы, она измеряет кубит, переносимый ее фотоном, задолго до Боба. Фактически она измеряет его еще до того, как второй фотон отправится от нее к Бобу. Поэтому, вместо того чтобы использовать источник фотонных пар и измерять один из них, безвозвратно разрушая его, Алисе проще использовать источник, который будет генерировать фотоны один за другим.

Третье упрощение. Источник единичных фотонов – это все еще очень сложная установка. Проще использовать источник, который генерирует очень слабые лазерные импульсы – такие, что в одном импульсе нечасто бывает по нескольку фотонов. И это уже будет надежный, хорошо отработанный и недорогой источник. Осталось только решить, что делать с происходящими время от времени многофотонными вспышками. На практике, однако, достаточно лишь точно оценить частоту таких вспышек. Сделаем консервативное предположение о том, что любой шпион может узнать об этих многофотонных импульсах всё. После обмена множеством импульсов (обычно – миллионами фотонных посылок) Алиса и Боб могут оценить, как много их враг может знать об их результатах в наихудшем случае. Затем они могут применить стандартный алгоритм усиления безопасности[49]. Он позволяет выделять из полного ключа укороченный и гарантирует, что противник получит доступ лишь к ничтожно малому количеству информации. Несмотря на то что новый ключ короче, можно быть уверенным в абсолютной защите[50].

В итоге у нас остается только два прибора. Один посылает лазерные пучки малой интенсивности с закодированной (в поляризации или во временных интервалах) квантовой информацией, как описано в главе 6, а другой измеряет поляризацию или возраст этих фотонов. Конечно, на практике есть и другие технические тонкости, но если вы осилили книгу до этого места, то вы поймете большую часть прикладной физики[51].

Сегодня некоторые организации Женевы, имеющие системы резервного хранения данных в 70 км от нее, вблизи Лозанны, с успехом используют оптоволоконный кабель, проходящий под Женевским озером, чтобы получить доступ к криптографическим системам, коммерциализованным компанией IDQ при Женевском университете.

1 ... 21 22 23 24 25 26 27 28 29 ... 41
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?