litbaza книги онлайнДомашняяКвантовая случайность. Нелокальность, телепортация и другие квантовые чудеса - Николя Жизан

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 17 18 19 20 21 22 23 24 25 ... 41
Перейти на страницу:

Квантовая нелокальность

Подведем итог. Квантовая теория предсказывает, и многие эксперименты это подтверждают, что в природе возможны корреляции между двумя удаленными событиями, которые нельзя объяснить ни влиянием одного события на другое, ни общей локальной причиной. Здесь надо уточнить, что при этом исключается любое воздействие, которое распространяется последовательно и непрерывно из точки в точку пространства с любой скоростью, не превышающей скорость света (в главах 9 и 10 мы увидим, что этот результат распространяется и на любые конечные скорости, даже сверхсветовые, если только они конечны). Сходным образом мы должны исключить и общие причины, следствия которых также могли бы последовательно передаваться в пространстве от точки к точке. Говорят, что эти два типа объяснения базируются на локальных переменных, потому что все происходит локально и развивается от точки к точке. Отсюда и возникли стандартные термины «локальное объяснение» и «локальные переменные»[40].

Действительно замечательная штука состоит в том, что, как только мы исключаем объяснения каким-либо воздействием или общей причиной с указанными свойствами, больше никаких локальных объяснений не остается. Это означает, что нельзя объяснить это явление, рассказав историю, которая разворачивалась бы во времени и пространстве и могла бы описать, как могут быть созданы эти знаменитые корреляции. Грубо говоря, эти нелокальные корреляции в некотором смысле прорываются в наше пространство-время извне!

Но не делаем ли мы поспешного вывода? И что же такое эти нелокальные корреляции? Начнем с последнего вопроса, менее сложного. Так как эти корреляции не имеют локального объяснения, их называют нелокальными. Более строго, нелокальный означает «не описываемый через локальные переменные». Определение «нелокальный», таким образом, является негативным: оно не говорит, чем эти корреляции являются на самом деле, но сообщает лишь, чем они быть не могут. Представьте себе, что нам сказали, что некий предмет не красный. Это ничего не говорит о цвете предмета, кроме того, что он не является красным.

Еще один важный аспект негативности данного определения заключается в том, что оно вовсе не значит, что нелокальные корреляции могут использоваться для коммуникации и обмена информацией, ни мгновенной, ни на скорости выше скорости света или же ниже ее. Нелокальные квантовые корреляции вообще ни в коем случае не являются средством коммуникации. Ничто из того, чем мы можем управлять в экспериментах с нелокальными корреляциями, не движется быстрее света. Если нет передачи, то нет и коммуникации. Но результаты, которые мы получаем в эксперименте, невозможно объяснить локальными моделями, то есть их нельзя описать историей, развивающейся в пространстве и времени.

Факт отсутствия коммуникации спасает квантовую физику от прямого конфликта с теорией относительности. Некоторые даже говорят, что они мирно сосуществуют[41] – весьма удивительный способ говорить о двух краеугольных камнях современной физики. Тем не менее эти краеугольные камни покоятся на основаниях, которые полностью противоречат друг другу. Квантовая физика случайна по своей сути, в то время как теория относительности совершенно детерминистична. Квантовая физика предсказывает существование корреляций, которые просто невозможно объяснить при помощи локальных переменных, а в теории относительности все локально самым фундаментальным образом.

Происхождение квантовых корреляций

Чтобы закончить эту главу, давайте ответим на вопрос, как в математическом представлении квантовой физики описываются нелокальные корреляции. Уравнения-то работают очень хорошо, пусть и не объясняют, откуда появились эти нелокальные корреляции.

Согласно формально-математическому описанию, эти особенные корреляции возникают благодаря запутанности, а она, в свою очередь, описывается особым типом волны, которая распространяется в пространстве гораздо большей размерности, чем наше трехмерное. Пространство, в котором распространяются такие «волны», известно в физике как конфигурационное пространство, имеет количество измерений, зависящее от количества запутанных частиц, а конкретно – в три раза больше, чем это количество. В конфигурационном пространстве каждая точка представляет положения всех частиц, даже если они находятся на значительном удалении друг от друга. Таким образом, локальное событие в конфигурационном пространстве может задействовать очень далекие друг от друга частицы. Но мы, простые человеческие существа, не можем воспринять конфигурационное пространство, мы видим только тени происходящего в нем.

Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса

Каждая частица отбрасывает на наш трехмерный мир тень, соответствующую ее положению в нашем пространстве. Тени одной точки могут находиться далеко друг от друга в нашем пространстве, хотя их порождает одна конкретная точка в конфигурационном пространстве (см. рис. 5.2) Конечно, это достаточно странное объяснение, если его вообще можно назвать объяснением. Если так, то в определенном смысле реальность – это то, что происходит в другом, отличном от нашего мире, а то, что мы воспринимаем, – лишь смутные тени, как в аллегории Платона о пещере, которую он использовал много столетий назад для объяснения сложности познания «истинной реальности».

Это «объяснение» происхождения нелокальных квантовых корреляций кажется более математическим, нежели физическим. Действительно, трудно поверить, что истинная реальность происходит в пространстве, количество измерений в котором зависит от количества частиц, особенно если вспомнить, что это количество изменяется с течением времени. Короче говоря, математическая форма квантовой теории ничего не объясняет, а просто предоставляет собой способ вычисления. Некоторые физики вообще считают, что объяснять ничего не нужно: «Замолчите и считайте», – сказали бы они нам.

Глава 6 Эксперимент

В этой главе я познакомлю вас с экспериментом Белла – с тем, который мы провели в 1997 году в Женеве, или, если быть точнее, между деревнями Берне и Белльвю, которые находятся в десяти километрах друг от друга по прямой. В эксперименте использовалась оптоволоконная сеть швейцарского телекоммуникационного оператора Swisscom. Рис. 6.1 показывает схему этого эксперимента – первого эксперимента Белла, проведенного вне лаборатории.

Квантовая случайность. Нелокальность, телепортация и другие квантовые чудеса
Рождение пар фотонов

Начнем с главной части эксперимента, то есть с генерации запутанных фотонов. Атомы кристалла выстроены в исключительно равномерном порядке (имейте в виду, что кристалл, который мы использовали как источник для запутывания, не имеет никакого отношения к приборам Алисы и Боба). Каждый атом окружен облаком электронов. Если возбуждать атомы, воздействуя на них светом, электронные облака осциллируют вокруг ядер атомов. Если эти колебания несимметричны, то есть если электронные облака отклоняются от ядра в одном направлении легче, чем в другом, то мы имеем дело с нелинейным кристаллом. Причина такого названия вот в чем. Взаимодействие фотона с атомом переводит электронное облако в возбужденное состояние, и облако начинает осциллировать. Если оно колеблется симметрично, оно избавляется от возбуждения, испуская фотон той же энергии, что и изначальный, в совершенно произвольном направлении. Это явление называется флюоресценцией. Если же вибрация асимметрична, то релаксация облака происходит с испусканием фотона другого цвета.

1 ... 17 18 19 20 21 22 23 24 25 ... 41
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?