Шрифт:
Интервал:
Закладка:
Чтобы ответить на этот вопрос, Бомбелли пришлось ввести новое число i, определив его просто как ответ на вопрос: «Чему равен квадратный корень из минус единицы?». На первый взгляд может показаться, что ввод i — малодушная попытка обойти решение проблемы, но предпринятый Бомбелли ход ничем не отличается от того, как были введены отрицательные числа. Столкнувшись с неразрешимой при ином подходе задачей, индийские математики определили число –1 как ответ на вопрос: «Что получится, если от нуля отнять единицу?». Число –1 кажется более приемлемым только потому, что из повседневного опыта нам знакомо аналогичное понятие «долга», в то время как в реальном мире нет ничего, что подкрепляло бы понятие мнимого числа. Немецкий математик XVII века Готтфрид Лейбниц дал следующее изящное описание необычайной природы мнимого числа: «Мнимое число — это бестелесное и преудивительное прибежище Божественного духа, почти амфибия между бытием и небытием».
Коль скоро мы определили число i как квадратный корень из –1, то должно существовать число 2i, так как оно равно сумме i плюс i (а также квадратному корню из –4). Аналогично, должно существовать и число i/2, так как оно получается при делении i на 2. Выполняя простые операции, можно получить мнимый эквивалент каждого так называемого действительного числа. Существуют мнимые натуральные числа, мнимые отрицательные числа, мнимые дроби и мнимые иррациональные числа. Проблема, которая теперь возникает, заключается в том, что у всех этих мнимых чисел нет своего естественного места на действительной числовой оси. Математики разрешили возникший кризис, введя еще одну — мнимую — ось, перпендикулярную действительной оси и пересекающую ее в нуле, как показано на рис. 12. Числа перестали занимать одномерную прямую, а расположились на двумерной плоскости. Чисто мнимые или чисто действительные числа заполняют соответствующие оси — действительную и мнимую, а комбинации действительного и мнимого чисел (например, 1+2i) называются комплексными числами и обитают на так называемой числовой плоскости.
Рис. 12. Введение оси для мнимых чисел превращает числовую ось в числовую плоскость. Каждой комбинации действительного и мнимого чисел соответствует определенная точка на числовой плоскости
Особенно замечательно, что в комплексных числах решается любое алгебраическое уравнение. Например, чтобы вычислить √3+4i, математикам не нужно изобретать числа нового типа: оказывается, что ответ равен 2+i, т. е. другому комплексному числу. Иначе говоря, создается впечатление, что мнимые числа — последний элемент, необходимый для завершения математики.
Хотя квадратные корни из отрицательных чисел получили название мнимых чисел, математики считают число i ничуть не более абстрактным, чем отрицательное или любое натуральное число. Кроме того, физики обнаружили, что мнимые числа дают лучший язык для описания некоторых явлений, протекающих в реальном мире. С помощью нехитрых манипуляций мнимые числа оказываются идеальным средством анализа естественного колебательного движения объектов, например, маятника. Такое колебательное движение, называемое на техническом языке синусоидальным колебанием, широко распространено в природе, и поэтому мнимые числа стали неотъемлемой составной частью многих физических расчетов. В наше время инженеры-электрики приспособили i к анализу переменных токов, а физики-теоретики вычисляют различные квантовомеханические эффекты с помощью осциллирующих волновых функций, суммируя степени мнимых чисел.
В чистой математике мнимые числа используют для решения задач, ранее казавшихся неразрешимыми. Мнимые числа буквально добавили новое измерение к математике, и Эйлер надеялся, что ему удастся использовать эту дополнительную степень свободы в поисках доказательства Великой теоремы Ферма.
И до Эйлера некоторые математики уже пытались приспособить метод бесконечного спуска Ферма для решения уравнения Ферма в целых числах при n, отличных от 4, но всякий раз попытка распространить метод приводила к каким-нибудь проблемам в логике. И только Эйлер показал, что, используя число i, можно заткнуть все дыры в доказательстве и заставить метод бесконечного спуска работать при n=3.
Это было грандиозное достижение, но повторить успех при других значениях n Эйлеру не удалось. К сожалению, все попытки применить те же рассуждения к другим значениям вплоть до бесконечности закончились провалом. И математик, решивший больше задач, чем кто-либо другой за всю историю, был вынужден признать поражение — Великая теорема Ферма оставалась неприступной. Единственным утешением для Эйлера было то, что он осуществил первый серьезный прорыв в «круговой обороне» труднейшей математической проблемы в мире.
Не обескураженный постигшей его неудачей, Эйлер продолжал создавать блестящие математические методы до конца своих дней, несмотря на то, что последние годы его жизни были омрачены полной слепотой. Эйлер начал слепнуть в 1735 году, когда Академия в Париже предложила премию за решение одной астрономической проблемы. Эта проблема была столь трудна, что математическое сообщество обратилось к Академии с просьбой дать на решение несколько месяцев, но Эйлеру отсрочка не была нужна. Задача настолько захватила его, что он, работая дни и ночи напролет, решил ее за трое суток и заслуженно получил премию. Но напряженнейшая работа в плохих условиях стоила Эйлеру, которому тогда едва исполнилось двадцать лет, потери одного глаза. Этот физический недостаток отчетливо виден на многих портретах Эйлера, в том числе и на том, который помещен в начале этой главы.
По совету Жана Лерона д'Аламбера Эйлера при дворе Фридриха Великого сменил Жозеф Луи Лагранж, по поводу чего прусский король позже заметил: «Вашим заботам и рекомендациям я обязан тому, что заменил математика, слепого на один глаз, математиком, зрячим на оба глаза, что особенно придется по вкусу членам моей Академии по разряду анатомии». По возвращении Эйлера в Россию Екатерина Великая приветствовала своего «математического циклопа».
Потеря одного глаза имела небольшой «плюс»: как заметил Эйлер, «у меня будет меньше возможностей отвлекаться». Сорок лет спустя, когда Эйлеру было уже шестьдесят, его состояние значительно ухудшилось: катаракта на здоровом глазе означала, что он обречен на полную слепоту. Эйлер решил не поддаваться болезни и начал тренироваться — зажмурив глаз, который видел все хуже и хуже, стал учиться писать вслепую, чтобы овладеть этим искусством прежде, чем свет навсегда померкнет для него. Через несколько недель Эйлер ослеп. Тренировка оказалась весьма кстати, но через несколько месяцев почерк Эйлера стал неразборчивым, и его сын Альберт взял на себя роль личного секретаря отца.
На протяжении следующих семнадцати лет Эйлер продолжал активно заниматься математикой. Более того, его производительность возросла, как никогда прежде. Огромный интеллект Эйлера позволял ему манипулировать понятиями, не фиксируя их на бумаге, а феноменальная память служила полноценной заменой библиотеки. Коллеги даже высказывали предположение, что наступление слепоты расширило горизонты его воображения. Следует заметить, что вычисления положений Луны были выполнены Эйлером уже после наступления слепоты. Для европейских монархов составленные Эйлером таблицы были самым ценным математическим достижением, и решением проблемы, над которой трудились величайшие математики Европы, включая Ньютона.