litbaza книги онлайнДомашняяВеликая теорема Ферма - Саймон Сингх

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 24 25 26 27 28 29 30 31 32 ... 84
Перейти на страницу:

Но как может быть нечто, явно меньшее бесконечной величины, также быть бесконечным? Немецкий математик Давид Гильберт сказал однажды: «Бесконечность! Ни один вопрос не оказывал столь глубокого воздействия на человеческий дух, ни одна идея не стимулировала столь плодотворно интеллект человека, и тем не менее ни одно понятие не нуждается в прояснении так сильно, как понятие бесконечности». Чтобы разрешить парадокс бесконечности, необходимо определить, что следует понимать под бесконечностью. Георг Кантор, работавший над проблемой бесконечности наряду с Гильбертом, определил бесконечность как длину нескончаемого перечня натуральных чисел (1,2,3,4…). По Кантору, все, что по величине сравнимо с длиной перечня натуральных чисел, также бесконечно.

Следуя этому определению, нам придется признать, что множество четных натуральных чисел, которое интуитивно кажется меньше, чем множество всех натуральных чисел, также бесконечно. Нетрудно доказать, что всех натуральных чисел столько же, сколько четных натуральных чисел, поскольку каждому натуральному числу можно подобрать пару — соответствующее четное число:

Великая теорема Ферма

Коль скоро каждому элементу перечня натуральных чисел можно поставить в соответствие элемент перечня четных чисел, то оба перечня должны быть одинаковой длины. Такой метод сравнения приводит к некоторым удивительным заключениям, в том числе к заключению о существовании бесконечно многих простых чисел. Кантор был первым, кто занялся формальным анализом понятия бесконечности, и математическое сообщество подвергло его теорию множеств резкой критике за радикальное определение бесконечности, предложенное им. К концу творческого периода Кантора нападки на него стали принимать все более личный характер и привели к тяжелой душевной болезни и глубокой депрессии Кантора. Его идеи получили признание уже после его кончины как единственно последовательное и эффективное определение бесконечности. Воздавая должное заслугам Кантора, Гильберт сказал: «Никто не может изгнать нас из рая, который Кантор создал для нас».

Великая теорема Ферма

Гильберту принадлежит пример бесконечности, известный под названием «отель Гильберта» и наглядно иллюстрирующий необычные свойства бесконечности. Этот гипотетический отель обладает отличительным признаком: число номеров в этом отеле равно бесконечности. Однажды в отель прибывает новый гость и к своему разочарованию узнает, что, несмотря на бесконечно большое количество номеров, свободных мест нет. Гильберт, выступающий в роли портье, поразмыслив немного, уверяет нового гостя, что найдет для него свободный номер. Он просит каждого постояльца переселиться в соседний номер: постояльца из номера 1 переселиться в номер 2, постояльца из номера 2 — переселиться в номер 3, и т. д. Каждый из постояльцев, живших в отеле, получает новый номер, а новый гость поселяется в освободившийся номер 1. Это показывает, что бесконечность плюс один равна бесконечности. [7]

На следующий вечер портье Гильберт столкнулся с гораздо более трудной проблемой. Как и накануне, отель был переполнен, когда прибыл бесконечно длинный лимузин, из которого высадилось бесконечно много новых гостей. Но Гильберта это нисколько не смутило, и он только радостно потирал руки при мысли о бесконечно многих счетах, которые оплатят вновь прибывшие. Всех, кто уже обосновался в отеле, Гильберт попросил переселиться, соблюдая следующее правило: обитателя первого номера — во второй номер, обитателя второго номера—в четвертый номер, и т. д., то есть каждого постояльца Гильберт попросил перейти в новый номер с вдвое большим «адресом». Все, кто жил в отеле до прибытия новых гостей, остался в отеле, но при этом освободилось бесконечно много номеров (все те, «адреса» которых нечетны), в которых находчивый портье расселил новых гостей. Этот пример показывает, что удвоенная бесконечность также равна бесконечности.

Возможно, отель Гильберта наведет кого-нибудь на мысль, что все бесконечности одинаково велики, равны друг другу, и что любые различные бесконечности можно втиснуть в номера одного и того же бесконечного отеля, как это делал находчивый портье. Но в действительности одни бесконечности больше других. Например, любая попытка найти в пару каждому рациональному числу иррациональное число так, чтобы ни одно иррациональное число не осталось без своей рациональной пары, непременно заканчивается неудачей. И действительно, можно доказать, что бесконечное множество иррациональных чисел больше бесконечного множества рациональных чисел. Математикам пришлось создать целую систему обозначений и названий с бесконечной шкалой бесконечностей, и манипулирование с этими понятиями — одна из наиболее острых проблем нашего времени.

Хотя бесконечность количества простых чисел навсегда разрушила надежды на скорое доказательство Великой теоремы Ферма, такой большой запас простых чисел пригодился, например, в таких областях как шпионаж или исследование жизни насекомых. Прежде чем мы вернемся к повествованию о поиске доказательства Великой теоремы Ферма, уместно немного отвлечься и познакомиться с тем, как правильно и неправильно используются простые числа.

* * *

Теория простых чисел — одна из немногих областей чистой математики, которые нашли непосредственное приложение в реальном мире, а именно в криптографии. Криптография занимается кодированием секретных посланий с таким расчетом, чтобы декодировать их мог только получатель, а перехватчик расшифровать бы их не мог. Процесс кодирования требует использования ключа к шифру, и по традиции для дешифровки необходимо снабдить получателя этим ключом. При такой процедуре ключ — самое слабое звено в цепи обеспечения безопасности. Во-первых, получатель и отправитель должны условиться о деталях ключа, и обмен информацией на этом этапе сопряжен с определенным риском. Если противнику удастся перехватить ключ при обмене информацией, то он сможет дешифровывать все последующие послания. Во-вторых, для поддержания безопасности ключи необходимо регулярно менять, и при каждой замене ключа существует риск перехвата нового ключа противником.

1 ... 24 25 26 27 28 29 30 31 32 ... 84
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?