Шрифт:
Интервал:
Закладка:
И все же эта, казалось бы, неразрешимая задача была решена. Понятно, что пропускать одно нейтрино сквозь астрономическую толщину вещества, чтобы оно с большой вероятностью прореагировало, — это нереально. Более практично пропускать астрономическое число нейтрино через разумную, скажем, метровую, толщину жидкого или твердого вещества.
Здесь помогло бурное развитие нейтронной физики, связанное с открытием и техническим освоением атомной энергии.
Известно, какое огромное значение в науке и практике имеют ядерные реакторы — устройства, в которых совершается деление ядер урана нейтронами. В каждом акте деления образуется несколько бета-радиоактивных ядер. И если справедлива гипотеза о существовании нейтрино, то в распадах таких ядер нейтроны должны испытывать превращения согласно знакомой нам схеме:
n → р + е− + ṽ
(теперь можно сказать, что значок «~» над символом нейтрино ν означает, что речь идет об антинейтрино; о том же, что это такое, мы расскажем немного ниже).
Значит, мощные реакторы должны быть интенсивными источниками антинейтрино.
В качестве примера рассмотрим атомный реактор мощностью 300 тысяч киловатт. Это очень большая мощность. Каждую секунду такой реактор испускает около 5∙1019, т. е. больше 10 миллиардов миллиардов антинейтрино. И все же уловить «проскальзывающие» частицы и здесь крайне трудно. О попытке зафиксировать нагрев вещества под действием нейтрино не может быть и речи. Для того чтобы, скажем, половина энергии, переносимой этим потоком частиц, освобождалась в виде тепла, необходим поглотитель массой 1060 тонн, что неизмеримо превышает массу Солнца.
Зато регистрация отдельных событий, вызванных антинейтрино, возможна. Физики предсказали любопытный ядерный процесс, который, несомненно, может быть вызван нейтрино и антинейтрино, если они существуют, — процесс, обратный бета-распаду.
На праздновании 70-летия профессора Б. Валена (Франция), 1982 г. Бруно Понтекорво поздравляет юбиляра
Представьте себе, что антинейтрино встречается с протоном — ядром атома водорода. Что произойдет при этом?
Теория утверждает: будут случаи, когда антинейтрино и протон превратятся в позитрон и нейтрон:
ṽ + р → n + е+
Вероятность этого процесса можно хорошо рассчитать. А регистрируя его в эксперименте, можно одновременно проверить гипотезу существования нейтрино.
Разумеется, для эксперимента необходим очень мощный источник «неуловимых» частиц. Но упоминавшийся нами реактор мощностью в 300 тысяч киловатт вполне пригоден для этой цели. На расстоянии 10 метров от него ожидаемый поток антинейтрино через каждый квадратный сантиметр составит примерно 1013 частиц в секунду. Такой поток антинейтрино, бомбардирующих тонну содержащего водород вещества (иначе говоря, запас протонов), по расчету должен каждый час вызывать около 100 превращений протонов в нейтроны.
И это предвидение сбылось. Оно подтвердилось в блестящем опыте, законченном в 1957 г. американскими физиками Райнесом и Коуэном. Антинейтрино попадали в огромный сцинтилляционный счетчик — цистерну с содержащим водород веществом, способным испускать вспышку света (сцинтилляцию), когда сквозь него проходит электрически заряженная частица. Каждую такую вспышку регистрировали фотоэлементы.
Эксперимент проходил так. Как только протон, которому выпала крайне редкая судьба встретиться с антинейтрино, превращался в нейтрон и позитрон, последний давал вспышку и регистрировался фотоэлементами. Через некоторое время нейтрон замедлялся и, когда он становился совсем медленным, захватывался одним из ядер атомов вещества счетчика. При этом рождались кванты электромагнитного излучения, которые регистрировались в том же сцинтилляторе. Таким образом, каждое взаимодействие антинейтрино с протоном влекло за собой две вспышки света. Одна из них фиксировалась сразу же, а другая — с некоторой задержкой.
Опыт был необычайно трудным. Достаточно сказать, что объем сцинтиллятора примерно в тысячу раз превышал обычный объем подобных устройств, используемых в исследовательских работах по ядерной физике. Это было вызвано тем, что благодаря «инертности» антинейтрино меньший объем прибора привел бы к очень незначительному числу регистрируемых событий.
Подготовка и выполнение этого уникального эксперимента потребовали более пяти лет.
Так «вор энергии» был наконец пойман. Он занимает сейчас прочное место в семье фундаментальных кирпичиков материи.
От всех других элементарных частиц нейтрино отличается чрезвычайно слабым взаимодействием с ними. Это объясняет и астрономическую проникающую способность нейтрино. Такое слабое взаимодействие могут испытывать и все другие элементарные частицы. Однако последние, кроме слабых взаимодействий, испытывают и иные, несравнимо более сильные, так что их проникающая способность измеряется, скажем, только десятками сантиметров чугуна.
Нейтрино уникально тем, что у него только слабое взаимодействие, чистейшим представителем которого оно является.
Читателю знакомы разные по своей природе силы, проявляющиеся во взаимодействиях между телами. Но глубоко различающихся в принципе типов взаимодействия очень мало. Если не считать тяготения, которое играет существенную роль только в присутствии огромных масс, то известны лишь три вида взаимодействий: сильные, электромагнитные и слабые.
Электромагнитные взаимодействия всем знакомы. Благодаря им движущийся неравномерно электрический заряд (скажем, электрон в атоме) испускает электромагнитные волны (например, видимый свет). С этим классом взаимодействий связаны все химические процессы, а также все молекулярные явления — поверхностное натяжение, капиллярность, адсорбция, текучесть. Электромагнитные взаимодействия, теория которых блестяще подтверждается опытом, глубоко связаны с электрическим зарядом элементарных частиц.
Сильные взаимодействия стали известны только после раскрытия внутренней структуры атомного ядра. В 1932 г. было обнаружено, что оно состоит из нуклонов, нейтронов и протонов. И именно сильные взаимодействия соединяют нуклоны в ядре — отвечают за ядерные силы, которые в отличие от электромагнитных характеризуются очень малым радиусом действия (около 10−13, т. е. одной десятитриллионной доли сантиметра) и большой интенсивностью. Кроме этого, сильные взаимодействия появляются при столкновениях частиц высоких энергий с участием пионов и так называемых «странных» частиц.
Интенсивность взаимодействий удобно оценивать по так называемой длине свободного пробега частиц в некотором веществе, т. е. по средней величине пути, который частица может пройти в этом веществе до разрушающего или сильно отклоняющего соударения. Ясно, что чем больше длина свободного пробега, тем менее интенсивно взаимодействие.