Шрифт:
Интервал:
Закладка:
Такова, следовательно, природа квазивида: плотность облака последовательностей в каждой точке пространства последовательностей определяется относительной приспособленностью последовательности; области облака, представляющие последовательности с меньшей адаптивностью, будут менее плотно заселены, а области с высокой адаптивностью заселены более плотно. В этом заключается наиболее мощное свойство вирусных квазивидов: плотность распределения вариантов адаптивности требует, чтобы последовательности были представлены с частотами, пропорциональными своей относительной адаптивности. Геномы с низкой способностью к адаптации будут реплицироваться мало или не будут реплицироваться вовсе, а наилучшим образом адаптированные геномы будут реплицироваться с наибольшей эффективностью. Отсюда следует, что с наибольшей вероятностью будут реплицироваться отличающиеся наибольшей адаптивностью геномы: их больше, и они претерпевают большее число репликативных циклов. Это может дать вирусам возможность осуществлять адаптивную эволюцию со скоростями, на несколько порядков более высокими, чем при истинно случайных мутациях. Последовательности быстро конденсируются около наиболее приспособленной области пространства последовательностей. Если изменятся условия окружающей среды, изменится и давление естественного отбора, и квазивид сможет воспользоваться присущим ему адаптивным потенциалом. Генотипы быстро перестроятся и начнут группироваться вокруг нового центра тяжести. Изменение ландшафта адаптивности пространства последовательностей, занятого квазивидом, является естественным следствием изменения давления отбора, действующего на популяцию вирусов. Такие изменения могут иметь следствием изменение иммунологического давления, производимого организмом-хозяином, применением антивирусных препаратов или даже передачей генетической информации другим видам, что требует приспособления вируса к новому хозяину. Частота генотипов, которые ранее занимали «центральное» пространство, зарезервированное за самыми приспособленными генотипами, уменьшится, и эти генотипы займут положение на периферии пространства адаптивности, если угодно, на самом краю облака последовательностей. В этом тоже заключается преимущество квазивида: он обладает памятью. Некогда самые приспособленные генотипы, свойства которых стали теперь дезадаптивными, могут продолжать существовать на границе пространства квазивида в роли минорных вариантов. При изменении внешних условий или давления отбора возможность призвать под знамена старые геномные варианты является большим преимуществом. Квазивиды могут быстро реагировать на изменения и адаптироваться, снова выбрав уже существующий вариант и быстро сгруппировавшись вокруг него, воссоздав оптимально приспособленный ландшафт последовательностей.
К настоящему времени накоплено немало экспериментальных данных, убедительно показывающих, что РНК-содержащие вирусы в ходе эволюции приобрели способность с выгодой для себя использовать склонность к ошибкам репликации. Совершенно очевидно, что должен существовать верхний предел склонности к ошибкам в работе вирусных РНК-полимераз. Хорошего может стать слишком много. При превышении некоего критического порога скорости появления мутаций в каждом геноме разнообразие перестанет быть благотворным; большинство дочерних геномов окажется нежизнеспособным. Чем больше геном, тем больше ошибок он может перенести в ходе своего синтеза до превышения какого-то критического порогового значения. В этот момент происходит катастрофа ошибок. Продолжая это рассуждение, можно понять, почему большинство РНК-содержащих вирусов имеют короткие геномы, меньше 15 тысяч оснований. Более длинные геномы не могут реплицироваться с надежностью, достаточной для предотвращения катастрофы ошибок (хотя я должен признать, что, вероятно, есть и другие ограничивающие факторы). Коронавирусы, имеющие геномы длиной свыше 30 тысяч оснований, являются исключением из общего правила. Тем не менее наше основополагающее рассуждение остается верным: максимальная длина генома РНК-содержащего вируса диктуется скоростью появления мутаций. В недавно выполненной работе было показано, что уникальность коронавирусов среди РНК-содержащих вирусов заключается в том, что они способны кодировать белки, повышающие надежность геномной репликации. Неструктурный белок 14 является 3’-5’ экзорибонуклеазой, которая обеспечивает точность репликации генома коронавирусов (Smith et al., 2015). Повышение надежности и точности репликации генома, в свою очередь, допускает экспансию генома и увеличение информационной емкости при сохранении способности к адаптивной эволюции.
Еще одним свидетельством в пользу того, что склонность к ошибкам при репликации геномов является эволюционным преимуществом РНК-содержащих генов, стало обнаружение нового мутанта вируса полиомиелита группой ученых Стэнфордского университета, которые опубликовали свою работу в 2003 году. Пфейффер и Киркегор выделили 3D-G645, мутантный вирус, кодирующий РНК-полимеразу с повышенной надежностью. Этот фермент делает меньше ошибок при синтезе РНК (Pfeiffer, Kirkegaard, 2003). Тот факт, что эта единичная точечная замена остатка глицина в полимеразе серином не произошла в ходе эволюции полиовируса, указывает на то, что в природной популяции вируса полиомиелита это простое изменение может лишить геном каких-то важных преимуществ. Представляется, что в обычных условиях РНК-полимераза вируса полиомиелита с низкой надежностью представляет какие-то преимущества перед лицом естественного отбора. Можно предположить, что создание геномного разнообразия, проявляющегося в форме квазивидов, обеспечивает преимущества вирусной популяции в условиях давления естественного отбора.
Группа ученых из Стэнфорда и еще одна группа из Калифорнийского университета в Сан-Франциско исследовали этот вопрос более подробно. Они смогли убедительно показать, как репликативная ненадежность и обусловленная ею множественность квазивидов благотворны для РНК-содержащих вирусов, особенно в таких сложных экологических условиях, как инфицированный животный организм (Pfeiffer, Kirkegaard, 2005; Vignuzzi et al., 2006). Обе группы исследовали патогенез вирусного поражения у инфицированных вирусом полиомиелита животных. В обоих случаях использовали генетически модифицированные породы мышей, восприимчивых к полиомиелитной инфекции. Ученые сравнили патогенез заболевания при заражении мутантным вирусом с надежной РНК-полимеразой, содержащей точечную мутацию G64S, и при заражении вирусом, содержащим РНК-полимеразу дикого типа. Мутантный вирус, который, как ожидалось, существует в виде квазивида пониженной сложности, проявил меньшую патогенность, и если вирусы дикого типа вызывали заболевание, которое практически во всех случаях поражало головной мозг, то мутантный вирус делал это с намного меньшей эффективностью. Ученые заключили, что сложная вирусная популяция, обладающая множеством генетических вариантов, имеет более выраженную способность вызывать заболевание у мышей. Полученные данные указывают на пользу квазивидов как таковых и на взаимодополняющую кооперацию между вариантами в пределах квазивида, которые максимально стимулируют патогенность вирусов для мышей. Сотрудники доктора Рауля Андино в Калифорнийском университете Сан-Франциско (Vignuzzi, 2006) показали, что при заражении природной болезнью полностью патогенным был только вирус, выделенный из головного мозга мышей. Этот вирус можно было ввести в периферические ткани здоровой мыши, что приводило к тяжелому инфекционному поражению и проникновению вируса в головной мозг. У мышей, инфицированных мутантным вирусом, поражением головного мозга страдало меньшее число животных, а вирус, который обнаруживали в мозге таких мышей, при введении в периферические ткани здоровых мышей в их мозге не обнаруживался. Мутантный вирус не мог создавать квазивиды, разнообразные настолько, чтобы проявлять полную патогенность после повторной инокуляции.