litbaza книги онлайнРазная литератураВероятностный мир - Даниил Семенович Данин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 59
Перейти на страницу:
на группы факторов и целые области явлений, усложняющих задачу».

Странность, заложенная, очевидно, в природе квантов, отражалась в обескураживающей двойственности их поведения — то корпускулы, то волны…

Замечательно, что эта двойственность света была замечена физиками давным–давно. Два с лишним века назад — в 1756 году — Ломоносов уже подытоживал разные взгляды на движение «тончайшей и неосязаемой материи света»:

«Первое движение может быть текущее, или проходное, как Гассенд и Невтон думают, которым эфир (материю света с древними и многими новыми так называю) движется от солнца и от других великих или малых светящих тел во все стороны наподобие реки беспрестанно. Второе движение может в эфире быть зыблющееся по Картезиеву и Гугениеву мнению, которым он наподобие весьма мелких и частых волн во все стороны от солнца действует…»

Тут Гассенд и Невтон — Гассенди и Ньютон — означены как сторонники корпускулярной теории света, по которой свет — поток частиц. А Картезий и Гугений — Декарт и Гюйгенс — представлены как сторонники волновой теории, по которой свет — поток волн. И вот что интересно: уже тогда Ломоносов должен был признать реальность обоих типов поведения света: он сказал про световую материю, что эти «возможные движения» мы действительно «в оной находим». И будущему поручил разобраться в истинности возникших теорий. Частицы или волны? «Которые действительно есть, или нет, — после окажется»!

Очень долго — С. И. Вавилов полагал, что на протяжении 150 лет, — волновая теория не умела объяснить элементарнейший факт: прямолинейное распространение света. Пожалуй, именно поэтому весь XVIII век в физике господствовала, хоть и не безраздельно, корпускулярная теория. Уж этот–то факт она объясняла проще простого: а как же еще могли световые частицы лететь сквозь пустоту, если не прямолинейно?!

Но эта же прямолетность частиц света мешала корпускулярной теории описать другое явление: способность света огибать препятствия — дифракцию. Из–за нее у теней не бывает абсолютно резких границ. Если свет — волны, тогда все понятно: волны и должны делать границы теней расплывчатыми, ибо могут заходить за край предмета. А прямолетящим частицам делать это не дано. Дифракция стала доводом против корпускулярной теории и помогла восторжествовать волновой.

А было еще явление интерференции. Сам Ньютон демонстрировал его воочию: «Если наложить выпуклую пластинку на плоскую, то… в однородном свете образуются светлые и темные кольца». Он растолковывал, что эти кольца — результат наложения «пропущенного и отраженного света». Но трудно было объяснить, как могла возникнуть темнота там, где встречались — накладывались друг на друга — два световых луча, если это были потоки корпускул? Освещенность должна была бы только усилиться.

А для волновой теории это явление интерференции не представляло никаких затруднений. Волны могли взаимно усиливаться, встречаясь своими горбами, и могли взаимно погашаться, когда горб одной приходился на впадину другой. Чередование светлых и темных колец естественно истолковывалось, как волновая картина.

К слову сказать, для волновой картины было совершенно необязательно знать, что именно «волнуется», порождая свет, воображаемый ли эфир или более реальные силы электромагнитного поля. В нашей хорошей истории еще появятся и другие волны, тоже умеющие взаимно интерферировать. И хочется привести еще один вариант все той же платоновской мысли, высказанный современным физиком — другом и соавтором Льва Ландау начала 30–х годов — Рудольфом Пайерлсом:

«…Чтобы понять, как происходит интерференция, не нужно интересоваться природой волны. Достаточно знать только, что существует некая величина, которая колеблется…»

Колебания разного знака — колебания в противоположные стороны — могут гасить друг друга, а колебания одного знака — усиливаться. Вот и весь механизм интерференции. Он стал сильнейшей опорой волновой теории света. Тем более что удалось волновым построением безупречно объяснить и прямолинейность распространения световых лучей.

Мудрено ли, что почти весь XIX век единовластно господствовала волновая теория. Корпускулярная отошла в историю.

Но наступил век XX. Он принес кванты Планка и световые частицы Эйнштейна… Что за притча — вновь возвращение на круги своя?

Точно предвидя, что это когда–нибудь случится, еще учитель Ньютона Исаак Барроу сказал:

«Оба представления о свете встречаются с равными трудностями. Поэтому я склоняюсь к мнению, что свет может порождаться обоими родами движения, как телесным истечением, так и непрерывными импульсами. Может быть, лучше приписывать некоторые действия одному, а иные другому».

Кажется, учитель был дальновиднее своего великого ученика? Но нет, С. И. Вавилов нашел и у Ньютона такие строки:

«…Если мы предположим, что световые лучи состоят из маленьких частиц, выбрасываемых по всем направлениям светящимся телом, то эти частицы… должны возбуждать в эфире колебания столь же неизбежно, как камень, брошенный в воду…»

Видно, что Ломоносов напрасно повторил общепринятое тогда суждение о Невтоне, как ревнителе корпускулярной и противнике волновой теории света. Ньютон даже предложил конструктивный способ примирения несовместимых образов частицы и волны! Может быть, этот способ был бы и хорош, если бы в нем материя частиц не отделялась от материи волн. А то получалось, что выбрасывается светящимся телом нечто одно, колеблется же в пространстве нечто другое. И все–таки неизъяснимо приятно думать, что тут состоялась перекличка великих через века: из всех гениев классики, вероятно, Ньютон с наименьшим протестом и с наибольшим сочувствием встретил бы Эйнштейнову идею волн–частиц… (Пока, подобно Эйнштейну, не обнаружил бы вдруг, к каким непоправимым бедам для классической физики эта идея ведет.)

Точности ради надо сказать: когда в 1905 году Эйнштейн вновь открыл зачеркнутые XIX веком световые корпускулы, термин «волна–частица» у него еще не появился. Но появился этот странный образ: всякий квант содержал волновой признак — частоту колебаний и признак частицы — ограниченность в пространстве.

Этот двойственный образ воображение не осваивало. Логика — тоже. Проходило время, а положение не становилось легче:

«Итак, теперь мы имеем две теории света, обе необходимые и — как приходится признать сегодня — существующие без всякой логической взаимосвязи, несмотря на двадцать лет колоссальных усилий физиков–теоретиков».

Эйнштейн сказал это в 1924 году. И словно отвечая на немой вопрос читателя: «Так не следовало ли за два десятилетия придумать что–нибудь более удобоваримое?» — он добавил:

«Квантовая теория света сделала возможной теорию атома Бора и объяснила так много фактов, что она должна содержать значительную долю истины»

Уж кому–кому, а Бору эти слова должны были бы прийтись по душе! А между тем в том же 24–м году он не без сердитой досадливости сказал молоденькому Вернеру Гейзенбергу:

— Даже если бы

1 ... 25 26 27 28 29 30 31 32 33 ... 59
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?