litbaza книги онлайнДомашняяСтратегии решения математических задач. Различные подходы к типовым задачам - Альфред Позаментье

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 42
Перейти на страницу:

Образцовое решение

Напишем сначала произведение первых n членов данной последовательности, что в определенном смысле будет организацией и представлением наших данных в более удобной форме:

Стратегии решения математических задач. Различные подходы к типовым задачам

«Превышает 100 000» означает, что нам нужно число, большее, чем 105, а это происходит, только когдаСтратегии решения математических задач. Различные подходы к типовым задачам или n (n + 1) > 110. Когда n ≤ 10, мы получаем n (n + 1) ≤ 110. Таким образом, наименьшее целое значение n, при котором выполняется условие задачи, равно 11.

Задача 7.4

Джером открыл свое первое предприятие по прокату каяков. За прокат он берет почасовую оплату. Каякам присваиваются идентификационные номера, на каждом из них стоят три цифры. Первая цифра — это номер предприятия, а именно 1. Номера у каяков не могут повторяться, а три цифры должны располагаться в возрастающем порядке. Ноль использовать нельзя. Вскоре Джером обнаружил, что использовал все возможные сочетания, которые удовлетворяют условиям. Какое максимальное количество каяков может быть у Джерома?

Обычный подход

Самый распространенный подход — выписывание всех возможных трехзначных чисел, удовлетворяющих условиям задачи. Но как узнать, все ли эти числа учтены? Существует ли метод, обеспечивающий гарантированное решение? Обычный подход явно не самый эффективный!

Образцовое решение

Представим наши данные в табличной форме:

Стратегии решения математических задач. Различные подходы к типовым задачам

Джером может иметь не более чем 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 каяков.

Задача 7.5

Фермер везет яблоки на рынок. Яблоки уложены в шесть ящиков. Весы на пункте взвешивания могут принять за раз только пять ящиков. Нам дают результаты шести взвешиваний:

Ящик B + ящик C + ящик D + ящик E + ящик F = 200 фунтов;

Ящик A + ящик C + ящик D + ящик E + ящик F = 220 фунтов;

Ящик A + ящик B + ящик D + ящик E + ящик F = 240 фунтов;

Ящик A + ящик B + ящик C + ящик E + ящик F = 260 фунтов;

Ящик A + ящик B + ящик C + ящик D + ящик F = 280 фунтов;

Ящик A + ящик B + ящик C + ящик D + ящик E = 300 фунтов.

Сколько фунтов яблок в каждом ящике?

Обычный подход

Эту задачу можно решить алгебраически, составив шесть уравнений с шестью неизвестными:

B + C + D + E + F = 200;

A + C + D + E + F = 220;

A + B + D + E + F = 240;

A + B + C + E + F = 260;

A + B + C + D + F = 280;

A + B + C + D + E = 300.

Решение шести уравнений довольно трудоемко, поэтому попробуем поискать другой подход к этой задаче.

Образцовое решение

С помощью нашей стратегии организации данных можно упростить решение задачи и сделать его изящным. Начнем с представления данных в табличной форме:

Стратегии решения математических задач. Различные подходы к типовым задачам

Мы опять получили довольно громоздкий набор уравнений, но можно посмотреть на них с другой точки зрения и организовать данные вертикально, просуммировав колонки в вертикальном направлении:

5A + 5B + 5C + 5D + 5E + 5F = 1500.

Разделив обе стороны уравнения на 5, мы получаем:

A + B + C + D + E + F = 300.

Однако шестое взвешивание в таблице показывает, что A + B + C + D + E = 300 фунтам. Следовательно, ящик F должен весить 0 фунтов. Обратимся затем к пятому взвешиванию, которое показывает, что A + B + C + D + F = 280 фунтам. Однако мы уже знаем, что F = 0, а значит A + B + C + D = 280.

Вернемся к шестому взвешиванию — A + B + C + D + E = 300, вычтем из него последнее уравнение и получим E = 20 фунтов.

Из четвертого взвешивания следует, что A + B + C + E + F = 260. Подставив в это уравнение уже известные значения F и E, мы получим A + B + C + 20 + 0 = 260, или A + B + C = 240. Подставляя это значение в пятое взвешивание, находим D = 40.

Если вычесть уравнение третьего взвешивания из уравнения четвертого взвешивания, то, зная, что F = 0, мы получаем:

Стратегии решения математических задач. Различные подходы к типовым задачам

Поскольку D = 40, мы получаем C = 60.

Подставим известные значения в уравнение первого взвешивания: B + C + D + E + F = 200 = B + 60 + 40 + 20 + 0. Таким образом, B = 80.

Поступив аналогичным образом с уравнением второго взвешивания, получим A = 100.

Использование табличной формы сделало данные более понятными и позволило решить задачу путем логических рассуждений.

Задача 7.6

Даны трехзначные числа, которые составлены исключительно из нечетных цифр. Чему равна сумма всех этих чисел?

Обычный подход

Обычно при решении задачи такого типа начинают составлять список нечетных чисел в том или ином порядке, а потом долго складывают их.

Образцовое решение

Главное здесь — организовать числа логичным образом. Например, наш список может выглядеть так: 111 + 113 + 115 + 117 + 119 + 133 + 135 + 137 + 139 + … + 511 + 513 + 515 + 517 + 519 + … + 991 + 993 + 995 + 997 + 999. Поскольку всего пять цифр могут находиться в каждом из трех разрядов, существует 5 × 5 × 5 = 125 возможных чисел. Если подойти к делу организованно, то можно складывать эти числа парами: первое и последнее, второе и предпоследнее и т. д. Сумма каждой из этих пар равна 1110. В нашем списке парСтратегии решения математических задач. Различные подходы к типовым задачам чисел. Таким образом, сумма этих чисел составляетСтратегии решения математических задач. Различные подходы к типовым задачам

1 ... 25 26 27 28 29 30 31 32 33 ... 42
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?