Шрифт:
Интервал:
Закладка:
Сумма расстояний от любой точки внутри или на сторонах равностороннего треугольника до трех сторон всегда постоянна. Чему равна сумма этих расстояний, если сторона равностороннего треугольника равна 4?
Существуют несколько способов решения этой задачи. Один из наиболее простых способов — выбрать какую-нибудь точку внутри равностороннего треугольника (т. е. сделать нечто вполне ожидаемое) и провести из нее три перпендикуляра к сторонам (рис. 6.1).
Приравняв площадь ΔABC и сумму площадей треугольников APB, PBC и CPA при использовании трех высот x, y, z и основания 4, мы получим площадь:
Таким образом, h = x + y + z. В нашем случае высота равностороннего треугольника равна 2 √3. Значит x + y + z = 2 √3.
Без ущерба общему смыслу задачи рассмотрим более простой аналогичный пример, поскольку мы вправе поместить точку P в любом месте внутри равностороннего треугольника или на его сторонах. Если совместить точку P с точкой A, то решение становится очевидным. Перпендикуляры к сторонам AB и AC имеют длину 0, а перпендикуляр к стороне BC — это просто высота треугольника, или 2 √3. Обратите внимание на то, что такую стратегию можно также классифицировать, как анализ экстремальных ситуаций. Мы рассмотрели экстремальную ситуацию, в которой точка совмещена с вершиной треугольника. Это лишний раз подчеркивает гибкость выбора стратегии.
В приведенных ниже выражениях m и n — положительные целые числа, каждое из которых больше 1. Какое из выражений имеет наибольшее значение?
Наиболее очевидный подход — реально выполнить операции как есть и попытаться выяснить, какое из выражений имеет наибольшее значение. Это громоздкий и нудный метод, требующий, к тому же, большого объема вычислений.
Попробуем решить более простую версию этой задачи. Для ее упрощения подставим вместо переменных подходящие положительные целые числа. Пусть m = 2, а n = 4. Тогда выражение (1) будет равно 2 + 4 = 6; выражение (2) — 2–4 = –2; выражение (3) — √16 = 4; выражение выражение Из этого следует, что наибольшее значение имеет выражение m + n.
Традиционный подход заключается в решении уравнения и определении значения x, которое равно Затем это значение подставляют в выражение и получают Конечно, это связано с определенными алгебраическими и арифметическими преобразованиями, однако в конечном итоге дает правильный ответ.
Лучше, однако, взглянуть на задачу с другой точки зрения, начиная с исходной информации: уравнения Если взять обратные величины обеих сторон уравнения, мы получим уравнение вида которое намного легче поддается решению. Поскольку нужно найти значение x + 6, мы просто прибавим 1 к обеим частям этого уравнения и получим или Возьмем опять обратные величины обеих сторон уравнения и получим, что и требовалось найти. Это несомненно более изящный подход.
Дан круг и его диаметр; покажите, как разделить площадь на семь частей равной площади без использования прямых линий.