Шрифт:
Интервал:
Закладка:
Остальные оксалаты в случае менее активных металлов образовали при разложении смесь металла и его оксида (Cu + CuO, Cd + CdO, Hg + HgO), оксалаты более активных металлов – только оксид (ZnO, SnO2, PbO), наконец, из оксалатов самых активных металлов получились карбонаты (MgO, CaCO3, SrCO3, BaCO3). Кстати, по данным других авторов, FeC2O4· 2H2O, выпадающий в осадок из водных растворов, при нагревании до 100 °С не теряет воду, а при 160–165 °С отщепляет ее очень медленно (со скоростью 1 % в течение 3 дней!). Интересно, что безводную соль можно получить также нагреванием кристаллогидрата до 176–195 °С под слоем… керосина. Я. А. Угай довольно подробно описывает термограммы, но не указывает, каким методом определялись продукты реакции.
В этом отношении более обстоятельна опубликованная в 1957 г. работа В. П. Корниенко из Харьковского государственного университета. Во-первых, он анализировал газообразные продукты разложения оксалата на содержание СО и СО2, во-вторых, в твёрдых продуктах после их взвешивания определялось (с помощью рентгенографического анализа) соотношение металла и его оксида. Разложению подвергались высушенные кристаллогидраты, так как обезвоживание некоторых оксалатов сопровождается их частичным разложением. Одновременно определялся тепловой эффект реакции. Вот какие получились результаты (напомним, что если образуется только металл, то на 1 моль оксалата выделится 2 моля СО2, а если только оксид, то получится 1 моль СО и 1 моль СО2):
Автор, анализируя свои и литературные данные, считает, что все реакции идут однотипно: сначала образуется оксид металла, который затем частично или полностью восстанавливается.
Подведём итоги. В результате всех исследований, вероятно, можно считать доказанным, что если продукт разложения FeC2O4· 2 H2O изолирован от кислорода воздуха (а выделяющиеся оксиды углерода и пары воды как раз этому способствуют), то образуется FeO. К такому выводу пришли и другие авторы, измерявшие соотношение выделяющихся в реакции газов. Так, группа химиков из университета Родса (Южная Африка), изучив в 1993 г. разложение смешанных оксалатов Fe, Cu, Co и Ni, в атмосфере азота, обнаружила выделение смеси СО и СО2.
А чем вообще может быть интересна эта реакция, помимо красивого демонстрационного эксперимента? Оказывается, у нее могут быть и практические применения. В 1990 г. во Франции и Германии были взяты патенты на способ получения ферритовых частиц MFe12O19 (M = Ba, Ca, Sr, Pb) исходя из оксалата железа.
В 1995 г. японские физики использовали реакцию разложение оксалата железа для синтеза титаната железа-магния, обладающего антиферромагнитными свойствами. В 1998 г. Н. Ф. Кущевская из Института проблем материаловедения Национальной академии наук Украины изучила разложение смешанного оксалата меди и железа. При его термическом разложении в атмосфере водорода она получила высокодисперсные порошки железо-медь с размером частиц 0,1–0,3 мкм, которые могут найти практическое применение для получения композиционных материалов. Кроме того, оказалось, что полученный из оксалата железа высокодисперсный порошок металла задерживает рост и размножение некоторых бактерий, например золотистого стафилококка. А группа учёных из Института химической физики РАН в 2001 г. использовала разложение оксалата железа в качестве эффективного метода синтеза железооксидных наноматериалов. Оказалось, что формирование нанокластеров оксида железа сходно с процессом образования зародышей в растворе или расплаве, занимающих ограниченный объем. Такие кластеры позволяют создавать материалы с новыми магнитными и каталитическими свойствами.
Примеры можно продолжить. Так что ученые исследуют механизм и продукты разложения этого интересного соединения не ради праздного интереса…
Из пяти отпущенных человеку органов чувств вкус – далеко не самый важный. Со зрением человек получает до 90 % информации. По слуху («гремит где-то: гроза приближается»), по запаху («что-то гарью пахнет!») он может определить опасность, хотя, конечно, до собачьего слуха и нюха человеку далеко. Малыши путем осязания быстро узнают опасность прикосновения к горячим предметам. А вот без вкусовых ощущений прожить, наверное, можно; конечно, любители поесть – гурманы с этим не согласятся.
На вкус и на цвет товарищей нет
Разнообразие вкусов огромно; их, вероятно, не меньше, чем различных цветов (художники различают тысячи оттенков цветовой гаммы). И так же, как белый свет можно «разложить» на составные части, так и любой вкус является комбинацией сладкого, соленого, кислого и горького (некоторые исследователи прибавляют к этим основным четырем еще жгучий, пряный и холодящий вкусы). Но чтобы почувствовать все богатства вкусовых ощущений, необходимо сочетание вкуса и запаха. Это особенно заметно, когда у человека сильный насморк: при исключении обоняния самая вкусная еда и лучшие напитки утрачивают для человека всю свою прелесть. Физиологи обнаружили даже, что если человек с завязанными глазами и зажатым носом (чтобы не чувствовать запаха пищи) будет жевать сладкий лук или яблоко, он может их не различить. Для обозначения сочетания вкуса и запаха в некоторых языках существуют специальные слова (например, flavour в английском, что примерно соответствует нашему термину «букет» по отношению к винам).
Вкусовые раздражения воспринимают особые вкусовые сосочки на языке – у взрослого человека их приблизительно 9000. Их число уменьшается с возрастом, особенно после 45 лет. У ребенка весь язык покрыт вкусовыми сосочками, у взрослого они расположены на ограниченной площади. (А вот у кошек вкусовых сосочков мало, поэтому привлекательность пищи они определяют в основном по запаху.) Каждый из этих сосочков содержит около сотни специализированных вкусовых клеток-рецепторов. Так что язык взрослого человека содержит около миллиона клеток, «специализирующихся» на вкусовых ощущениях. От этих клеток отходят нервные окончания, передающие сигналы в мозг. Вкусовые клетки живут недолго – всего 10 дней и постоянно заменяются новыми. Чувствительность вкусовых рецепторов довольно низкая по сравнению с рецепторами, ответственными за обоняние.
Вкусовые сосочки и соответственно вкусовые рецепторы расположены лишь в определенных местах языка на сравнительно небольшой площади. Так, на сладкое реагирует передняя часть языка, на соленое – его боковые поверхности, на кислое – тоже боковые поверхности, только расположенные дальше, а на горькое – средняя часть основания языка. При этом заметная часть верхней поверхности языка и вся его нижняя поверхность совершенно лишены вкусового чувства. Чтобы выяснить это, отдельные части языка смазывали кисточкой, смоченной определенным «эталонным» веществом. При этом можно было наблюдать интересное явление – «борьбу» вкусов, когда на одну часть языка воздействовали кислым веществом, а на другую – горьким. В этом опыте человек попеременно ощущал то один вкус, то другой, но, в отличие от цвета, «среднего» между кислым и горьким вкусом не бывает! Интересно, что у кошек почти нет рецепторов сладкого вкуса, поэтому, в отличие от собак или лошадей, они сладкое не любят. Не исключено, что предрасположенность человека к сладкому и нелюбовь к горькому появились в процессе эволюции: сладкий вкус типичен для полезных спелых плодов, а горький – для многих ядовитых растений (к сожалению, не для всех). Чтобы вещество имело какой-либо вкус, оно должно быть хотя бы немного растворимо в воде – иначе оно не сможет подействовать на вкусовые клетки. Недаром расположенные между сосочками железы выделяют жидкость, которая эти сосочки непрерывно промывает.