litbaza книги онлайнДомашняяОсновы геоэкологии - Геннадий Голубев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 93
Перейти на страницу:

Рассмотрим причины наблюдаемого роста концентрации, основываясь на антропогенной части глобального биогеохимического цикла углерода.

Основной источник поступления углекислого газа в атмосферу – сжигание горючих ископаемых (угля, нефти, газа) для производства энергии. Около 80 % всей энергии в мире производится за счет тепловой энергетики. Поступление углекислого газа в атмосферу за период с 1860 по 1990 гг. увеличивалось в среднем на 0,4 % в год. В течение 1980-х гг. она составляла 5,5±0,5 млрд т (гигатонн) углерода в год.

Сокращение лесов тропического и экваториального пояса, деградация почв, другие антропогенные трансформации ландшафтов приводят в основном к высвобождению углерода, которое сопровождается его окислением, то есть образованием СО2. В целом эмиссия в атмосферу за счет преобразования тропических ландшафтов составляет 1,6± 1,0 млрд т углерода в год. С другой стороны, в умеренных и высоких широтах Северного полушария отмечается в целом преобладание восстановления лесов над их исчезновением. Для построения органического вещества лесов в процессе фотосинтеза углекислый газ забирается из атмосферы. Это количество, в пересчете на углерод, равно 0,5±0,5 млрд т. Пределы точности, равные самой величине, указывают нам также на все еще весьма низкий уровень понимания антропогенной роли в некоторых звеньях глобального биогеохимического цикла углерода.

В атмосфере в результате деятельности человека ежегодно дополнительно накапливается 3,3±0,2 млрд т углерода в виде углекислого газа.

Мировой океан поглощает из атмосферы (растворяет, химически и биологически связывает) около 2,0±0,8 млрд тонн углерода в виде углекислого газа. Суммарные величины поглощения углекислого газа океаном пока непосредственно не измеряются. Они рассчитываются на основе моделей, описывающих обмен между атмосферой, поверхностным и глубинным слоями океана.

Таблица 8

Глобальный баланс антропогенного углерода, млрд т за год

Основы геоэкологии

Увеличение концентрации диоксида углерода в атмосфере должно стимулировать процесс фотосинтеза. Это так называемая фертилизация, благодаря которой продукция органического вещества, по некоторым оценкам, может возрасти на 20–40 % при удвоенной, по сравнению с современной, концентрацией углекислого газа. Исследования процесса фертилизации проводились пока только в лабораторных условиях. Глобальная оценка поглощения углекислого газа растительностью мира вследствие ее фертилизации на 1980-е гг. составляет 0,5–2,0 млрд т за год. В балансе антропогенных потоков углерода все пока еще плохо понимаемые процессы, протекающие в экосистемах суши, включая фертилизацию, оцениваются в 1,3±1,5 млрд т.

Баланс антропогенного углерода за 1980–1989 гг., связанный с эмиссией, поглощением и изменением запасов углекислого газа, в млрд т за год представлен в табл. 8.

Как видим, невязка баланса значительна, и более глубокое ее объяснение – один из крупнейших, пока недостаточно решенных вопросов. По-видимому, необходимо более углубленное изучение режима антропогенного углерода как в Мировом океане и отдельных его частях, так и в экосистемах суши.

Метан (СН4) также играет заметную роль в парниковом эффекте, составляющую приблизительно 19 % (на 1995 г.). Метан образуется в анаэробных условиях, таких как естественные болота разного типа, толща сезонной и вечной мерзлоты, рисовые плантации, свалки, а также в результате жизнедеятельности жвачных животных и термитов. Оценки показывают, что около 20 % суммарной эмиссии метана связаны с технологией использования горючих ископаемых (сжигание топлива, эмиссии из угольных шахт, добыча и распределение природного газа, переработка нефти). Всего антропогенная деятельность обеспечивает 60–80 % суммарной эмиссии метана в атмосферу.

В атмосфере метан неустойчив. Он удаляется из нее вследствие взаимодействия с ионом гидроксила (ОН) в тропосфере. Несмотря на этот процесс, концентрация метана в атмосфере увеличилась примерно вдвое по сравнению с доиндустриальным временем и продолжает расти со скоростью около 0,8 % в год.

Эмиссия метана с болот зоны избыточного увлажнения Северного полушария и из районов вечной мерзлоты весьма чувствительна к изменениям температуры и осадков. Измерения показывают, что рост температуры и увеличение увлажненности (то есть продолжительности нахождения территории в анаэробных условиях) еще более усиливают эмиссию метана. Это, между прочим, характерный пример положительной обратной связи. Наоборот, снижение уровня грунтовых вод из-за пониженной увлажненности должно приводить к уменьшению эмиссии метана (отрицительная обратная связь).

Текущая роль оксида азота (N2O) в суммарном парниковом эффекте составляет всего около 6 %. Концентрация оксида азота в атмосфере также увеличивается. Предполагается, что его антропогенные источники приблизительно вдвое меньше естественных. Источниками антропогенного оксида азота является сельское хозяйство (в особенности пастбища в тропиках), сжигание биомассы и промышленность азотсодержащих веществ. Его относительный парниковый потенциал (в 290 раз выше потенциала угдекислого газа) и типичная продолжительность существования в атмосфере (120 лет) значительны, компенсируя его невысокую концентрацию.

Хлорфторуглероды (ХФУ) – это вещества, синтезируемые человеком и содержащие хлор, фтор и бром. Они обладают очень сильным относительным парниковым потенциалом и значительной продолжительностью жизни в атмосфере. Производство хлорфторуглеродов в мире в настоящее время контролируется международными соглашениями по защите озонового слоя, включающими и положение о постепенном снижении производства этих веществ, замене их на менее озоноразрушающие, с последующим полным его прекращением. В результате скорость накопления ХФУ в атмосфере замедлилась. ХФУ разрушают озон в тропосфере, и их итоговая роль в парниковом эффекте составляет, на середину 1990-х гг., приблизительно 7 %.

Озон (О3) – важный парниковый газ, находящийся как в стратосфере, так и в тропосфере. Он влияет как на коротковолновую, так и на длинноволновую радиацию, и потому итоговые направление и величина его вклада в радиационный баланс в сильной степени зависят от вертикального распределения содержания озона, в особенности на уровне тропопаузы, где надежных наблюдений пока недостаточно. Поэтому определение вклада озона в парниковый эффект сложнее по сравнению с хорошо перемешиваемыми газами. Оценки указывают на положительную результирующую (приблизительно +0,4 ватт/м2).

V.2.3. Воздействие тропосферных аэрозолей на парниковый эффект

Аэрозоли – это твердые частицы в атмосфере диаметром от 10-9 до 10-5 м, или от 10-3 до 101 микрон (рм). Они образуются вследствие ветровой эрозии почвы, извержений вулканов и других природных процессов, а также благодаря деятельности человека (сжигание горючих ископаемых и биомассы).

Антропогенные аэрозоли двояко влияют на радиационный баланс Земли:

1 ... 29 30 31 32 33 34 35 36 37 ... 93
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?