litbaza книги онлайнДомашняяЧеловек + машина - Джеймс Уилсон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 29 30 31 32 33 34 35 36 37 ... 58
Перейти на страницу:

Для специалиста по разъяснению такая база данных бесценна. В его обязанности входит принятие важных решений о том, какие технологии искусственного интеллекта лучше всего использовать для конкретных задач. В данном случае особое внимание следует уделить выбору между точностью и объяснимостью алгоритма. Например, система глубокого обучения обеспечивает высокий уровень точности прогнозирования, однако у компаний могут возникнуть трудности с объяснением полученных результатов. Напротив, дерево решений может не привести к получению результатов с высокой точностью прогнозирования, но обеспечит существенно более высокий уровень разъяснения. Так, например, для внутренней системы оптимизации логистики, допускающей только небольшие отклонения от графика поставок, целесообразно использовать технологию глубокого обучения. С другой стороны, в области здравоохранения или взаимодействия с клиентами осуществляется строгий надзор со стороны регуляторов, а значит, в этом случае лучше использовать алгоритмы убывающих списков правил[100].

Кроме того, специалист по разъяснению может решить, что в определенной области целесообразно вообще отказаться от искусственного интеллекта. Оптимальным вариантом может стать традиционный обработчик правил. Принимая подобное решение, специалист по разъяснению должен учитывать не только технологические аспекты, но и финансовые, юридические, этические и другие важные факторы.

Эксперты по устойчивости

В 2015 году на заводе компании Volkswagen в Германии робот нанес сотруднику смертельные увечья. Трагическая гибель рабочего привлекла внимание общества к растущей зависимости от автоматизированных инструментов. С тех пор как компьютеры начали брать на себя выполнение все более сложных задач, усиливаются опасения, что машины могут выйти из-под контроля. От компьютера HAL из фильма «2001 год: Космическая одиссея» до киборгов из франшизы «Терминатор» — популярная культура только подогревает тревоги людей. Однако робот в Германии не совершал умышленного нападения на рабочего. Согласно первым отчетам, причина трагедии заключалась в программной ошибке — другими словами, в ошибке человека.

Это ужасающее происшествие — исключительный случай, однако обеспечение корректного использования искусственного интеллекта — первоочередная обязанность представителей новой профессии: экспертов по устойчивости, которые должны постоянно работать над тем, чтобы системы искусственного интеллекта функционировали надлежащим образом как инструменты, призванные обслуживать людей, помогать им выполнять свою работу и облегчать их жизнь. Таким образом эксперты по устойчивости систем искусственного интеллекта помогут развеять страхи перед мрачным будущим, в котором роботы станут разумными и превзойдут человеческое общество (рис. 7).

Человек + машина

Рис. 7. Функции экспертов по устойчивости

Очевидно, один из лучших способов добиться того, чтобы сложные роботы и другие системы искусственного интеллекта функционировали так, как было задумано, — изначально правильно проектировать их. Именно в этом случае компаниям понадобятся специалисты по контекстному дизайну. Разрабатывая новую систему, они должны учитывать самые разные факторы, зависящие от контекста, такие как бизнес-среда, задача бизнес-процесса, пользователи, культурные коды и т. д. Важную роль могут играть даже, на первый взгляд, мелкие детали. Когда компании General Motors и Fanuc проектировали нового робота для гибкого автоматизированного производства, призванного работать бок о бок с людьми, возникли трудности с выбором цвета для него. Оранжевый символизировал опасность, а желтый можно было интерпретировать как предупреждение. В конечном счете остановились на цвете лайма, который они назвали «безопасным зеленым»[101].

Безусловно, даже грамотно спроектированные системы могут создавать определенные проблемы, а в некоторых случаях проблема заключается в чересчур хорошем функционировании технологии, что приводит к непреднамеренному нанесению вреда. Много лет назад известный писатель-фантаст Айзек Азимов сформулировал три закона робототехники:

• Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред.

• Робот должен повиноваться всем приказам человека, кроме тех случаев, когда эти приказы противоречат первому закону.

• Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит первому или второму законам.

Впервые изложенные в рассказе «Хоровод» (1942), эти три закона актуальны до сих пор, однако это только отправная точка. Например, должен ли беспилотный автомобиль, пытаясь защитить своих пассажиров, свернуть в сторону, чтобы не сбить выбежавшего на дорогу ребенка, если при этом он может совершить наезд на пешехода? Именно из-за таких вопросов компаниям, которые проектируют и используют сложные технологии искусственного интеллекта, понадобятся специалисты по безопасности систем искусственного интеллекта. Они должны делать все от них зависящее, чтобы предвидеть непреднамеренные результаты действий системы искусственного интеллекта, а также без промедления устранять последствия любых происшествий.

По итогам недавнего исследования Accenture мы обнаружили, что менее трети компаний демонстрируют высокий уровень доверия к справедливости и контролируемости систем искусственного интеллекта, а также что менее половины компаний испытывают столь же высокое доверие к безопасности этих систем[102]. Исследования показали, что каждый третий опасается искусственного интеллекта, а каждый четвертый убежден, что эта технология нанесет вред обществу[103]. Безусловно, это указывает на фундаментальные проблемы, которые необходимо решить, чтобы и впредь использовать технологии искусственного интеллекта. Именно здесь эксперты по устойчивости систем искусственного интеллекта будут играть ключевую роль.

За одну из важнейших функций отвечают менеджеры по соблюдению этических норм. Они будут блюстителями общепринятых норм, человеческих ценностей и моральных принципов. Например, если система искусственного интеллекта по одобрению кредитов проявляет дискриминацию к людям, проживающим в определенных регионах, такой менеджер обязан расследовать и устранить это нарушение этических (а может, даже правовых) норм. Другие случаи предвзятости могут быть не столь явными, как у поискового алгоритма, выдающего изображения только белых женщин, когда кто-то вводит запрос «любящая бабушка». Менеджер по соблюдению этических норм в сотрудничестве с экспертом по алгоритмам должен раскрыть причины такой выдачи, а затем принять надлежащие меры по их устранению (табл. 1).

1 ... 29 30 31 32 33 34 35 36 37 ... 58
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?