litbaza книги онлайнРазная литератураОхота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 339 340 341 342 343 344 345 346 347 ... 482
Перейти на страницу:
4,6 млн долларов[3308], что примерно на три порядка больше годовой зарплаты рядового специалиста из страны третьего мира, занятого разметкой данных для задач машинного обучения.

Если первое поколение «железа» для MLaaS представляло собой просто множество серверов, оснащённых GPU или TPU, то современные решения в этой области основаны на специализированных вычислительных узлах, связанных между собой сверхбыстрыми каналами обмена данными. Вслед за MLaaS появились платформы GaaS (Games as a Service, Игры как сервис), предоставляющие любителям компьютерных игр доступ к высокопроизводительному игровому оборудованию — главным образом всё к тем же GPU. Таким образом, высокая стоимость оборудования стимулировала развитие новых практик его использования. Важным фактором здесь стал и бум криптовалют, также увеличивший потребность в вычислительных мощностях и подстегнувший рост цен на высокопроизводительное, в том числе тензорное, «железо». Развитие аппаратных платформ, в свою очередь, подстегнуло дальнейшие эксперименты со сверхбольшими моделями. Трудно сказать, куда именно приведёт наметившийся тренд. Возможно, к превращению всей Солнечной системы в одно гигантское вычислительное устройство, частью которого станут и тела людей. Кто знает, быть может, некоторые чёрные дыры — это гигантские гиперкомпьютеры сверхцивилизаций, в которых, как в коконах, сокрыты бесчисленные виртуальные миры, в которых дремлют потомки разумных видов, некогда подобных нашему.

Впрочем, рука об руку с централизацией вычислений в машинном обучении идут процессы, направленные на его децентрализацию. Для их обозначения обычно используют термин «федеративное обучение» [federated learning] (или «совместное обучение» [collaborative learning]). К этой сфере относятся методы машинного обучения, которые используют вычисления на децентрализованных устройствах, каждое из которых содержит некоторое подмножество обучающей выборки. Федеративное обучение позволяет нескольким участникам создавать общую модель машинного обучения без непосредственного обмена данными, что даёт возможность решать такие важные проблемы, как конфиденциальность и безопасность данных, разграничивать доступ к отдельным типам данных или отдельным прецедентам обучающей выборки. Федеративное обучение активно используется в ряде отраслей, таких как телекоммуникации, интернет вещей, фармацевтика и оборона. В настоящее время разработано множество разновидностей и специализированных алгоритмов федеративного обучения. Они позволяют системам машинного обучения преодолевать барьеры, связанные с многочисленными ограничениями на доступ к данным, необходимым для создания эффективных моделей. Пока сами эти барьеры существуют, будут развиваться и технологии, позволяющие машинному обучению выжить в условиях информационной раздробленности. Кто знает, быть может, будущее Земли будет больше похоже на быт азимовской планеты Солярия, жители которой избегают физических контактов и живут в отдалённых друг от друга укреплённых поместьях, обслуживающихся роботами[3309]. По крайней мере, в эпоху пандемии коронавируса мы, кажется, сделали шаг именно в эту сторону.

Так или иначе, как централизованные, так и распределённые схемы машинного обучения будут продолжать своё развитие в ближайшей перспективе, а вместе с ними будут развиваться соответствующие алгоритмы и модели.

8.3 Иллюзии нейросетей

Что если мир — иллюзия и ничего нет? Тогда я определённо переплатил за ковёр.

Вуди Аллен. Без перьев[3310]

Не исключено, что серьёзной проблемой в некоторых областях применения нейросетевых моделей может быть возможность осуществления «состязательных атак» [adversarial attacks], позволяющих вынудить модель выдать неверный ответ. То, что модели машинного зрения могут ошибаться, не являлось ни для кого секретом. Также большой неожиданностью не стал тот факт, что изображение можно модифицировать таким образом, чтобы спровоцировать у нейросетевой модели своеобразную оптическую иллюзию. Например, на изображении кошки, приведённом ниже, обученная сеть Inception V3 видит гуакамоле (блюдо мексиканской кухни)[3311], [3312], [3313].

Рис. 179. Пример неверной классификации сетью Inception V3 изображения кошки

Такие фокусы становятся возможны благодаря тому, что веса обученной сети находятся в открытом доступе, поэтому остаётся только решить нехитрую задачу оптимизации — найти по возможности минимальную матрицу изменений пикселей исходного изображения, чтобы максимизировать ошибку сети. По сути, этот процесс представляет собой обучение искажающей модели, которая противодействует модели, на которую осуществляется атака, с той лишь разницей, что веса атакуемой модели остаются неизменными, поэтому у неё в этом состязании просто нет шансов.

Впрочем, до некоторых пор проблему не признавали особенно серьёзной. В конце концов, если наклонить приведённое выше изображение всего на несколько градусов, оптическая иллюзия исчезает и сеть успешно распознаёт на картинке кошку.

Рис. 180. Пример верной классификации сетью Inception V3 немного повёрнутого изображения кошки

Ранее предполагалось, что для успешной атаки на систему машинного зрения необходимо предъявить ей модифицированный стимул в неискажённом виде, что в реальном мире представлялось затруднительным — параметры освещения, наклона картинки, расстояния до неё почти невозможно повторить без изменений. Однако в 2017 г. авторы работы «Синтез робастных состязательных примеров» (Synthesizing Robust Adversarial Examples)[3314] (под «робастностью» подразумевается устойчивость модели к помехам) смогли продемонстрировать возможность атаки, устойчивой к подобным искажениям. При помощи 3D-принтера они изготовили пластмассовую черепашку, на панцирь которой был нанесён специальный узор, который заставлял нейросеть Inception V3 опознавать её как винтовку.

Рис. 181. Пример неверной классификации сетью Inception V3 изображения созданной исследователями пластмассовой черепахи

Ещё один артефакт, напоминающий по виду бейсбольный мяч, благодаря покрывавшим его поверхность пятнам попеременно классифицировался сетью то как «бейсбол», то как «эспрессо».

Рис. 182. Другие примеры неверной классификации сетью Inception V3 изображения созданного исследователями пластмассового бейсбольного мяча

Если черепаху можно выдать за винтовку, то, вероятно, и винтовку можно выдать за черепаху. Значит ли это, что охранные системы на основе свёрточных нейронных сетей уязвимы? Представьте себе поведение автомобильного автопилота, если хулиганы нанесли на дорогу изображение, заставляющее автопилот считать, что на проезжую часть перед автомобилем вышел слон? Из-за важности этой проблемы в последние годы исследователи уделяют ей немалое внимание. В результате было изобретено несколько её интересных решений (некоторые из них другим исследователям со временем удалось опровергнуть). В целом задача исследователей в этой области заключается в том, чтобы создать алгоритмы, делающие стоимость атаки на систему машинного зрения неприемлемой для потенциального атакующего. К оптическим иллюзиям склонны и люди, и различные системы камуфляжа являются не чем иным, как попытками увеличить вероятность ошибки людей, старающихся различить камуфлированные объекты. Впрочем, иллюзии, испытываемые свёрточными нейронными сетями, часто совсем непохожи на ошибки человеческого зрения.

Например, изображения, приведённые ниже, демонстрируют, что перестановка глаза и рта на фотографии Ким Кардашьян приводит к повышению уверенности сети в том, что на фотографии изображён человек, в то время как переворот фотографии на 180 градусов, напротив,

1 ... 339 340 341 342 343 344 345 346 347 ... 482
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?