litbaza книги онлайнРазная литератураСолнечные элементы - Марк Михайлович Колтун

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 33 34 35 36 37 38 39 40 41 ... 50
Перейти на страницу:
тонкая переходная область, состав которой плавно менялся от GaP до GaAs, что соответствовало изменению ширины запрещенной зоны Eg от 2,25 до 1,43 эВ (при комнатной температуре). Общая толщина слоя GaP и переходной варизонной области составляла 5–7 мкм. При последующей термодиффузии акцепторной примеси цинка в полученных структурах по аналогичной методике создавались p-n-переходы, глубину залегания которых можно было регулировать с помощью режимов процесса термодиффузии.

Изменение вида кривой спектральной чувствительности в таких элементах может быть легко достигнуто различной глубиной залегания p-n-перехода: кривая имеет резко выраженный максимум при λ=0,45 мкм, что обусловлено залеганием p-n-перехода в приповерхностном слое GaP, и два максимума (коротковолновый при λ=0,45 мкм и длинноволновый при λ=0,85 мкм) при расположении р-n-перехода в области переменного состава между фосфидом и арсенидом галлия. Следовательно, спектральную чувствительность таких солнечных элементов можно направленно изменять в интервале длин волн от 0,45 до 0,85 мкм. При большой глубине термодиффузии цинка и нахождении р — n-перехода в чистом арсениде галлия на кривой спектральной чувствительности остается практически один максимум при 0,85 мкм. Напряжение холостого хода Ux.x солнечных элементов на основе гетероструктуры фосфид галлия — арсенид галлия достигало 0,8 В, хотя КПД не превышал 4–5 %.

В дальнейшем было обнаружено, что в силу практически полного соответствия постоянных решетки твердого раствора алюминия в арсениде галлия и чистого арсенида галлия образуемый ими гетеропереход обладает весьма малой плотностью состояний и центров рекомбинации на границе раздела, что обеспечивает в этих структурах двустороннее собирание носителей заряда с высоким квантовым выходом. На основе такой гетероструктуры ленинградскими и московскими физиками в начале 70-х годов был создан солнечный элемент с η = 11 % при измерениях на имитаторе внеатмосферного солнечного излучения.

Наибольшее распространение нашли затем в СССР и за рубежом солнечные элементы на основе гетеросистем р-Ga1-хAlхAs — p-GaAs — n-GaAs, получаемых методом жидкостной или газовой эпитаксии с одновременной термодиффузией акцепторной примеси цинка, в которых основной p-n-переход, разделяющий носители заряда, расположен в базовой пластине из арсенида галлия, а слой твердого раствора алюминия в арсениде галлия выполняет роль широкозонного окна — фильтра и благодаря изотипному p-n-переходу на поверхности арсенида галлия практически устраняет потери на поверхностную рекомбинацию.

Ширина и химический состав широкозонного фильтра могут меняться, существенно влияя на свойства получаемых солнечных элементов. Например, при увеличении толщины этого слоя, а также слоя p-GaAs и степени легирования обоих слоев резко уменьшается последовательное сопротивление элементов (и становится выгодно использовать их при больших концентрациях потока солнечного излучения); при уменьшении толщины верхних слоев элементов практически исчезают оптические потери на поглощение в этих слоях. Изменение химического состава слоя окна (в частности, содержания алюминия в нем) позволяет создать на поверхности вари-зонную структуру, помогающую собиранию носителей заряда, рождаемых коротковолновым светом в верхних слоях солнечных элементов. Для расчета и оптимизации оптических и электрических свойств солнечных элементов на основе таких гетероструктур прежде всего необходимо знать зависимость ширины запрещенной зоны и характера оптических переходов в основной полосе поглощения от состава материала, а также оптические константы полупроводниковых слоев.

Как было показано в ряде исследований, для полупроводникового соединения AlxGa1-xAs при x≤0,4 характерны прямые оптические переходы, а в области 0,4≤x≤0,8 (предел химической устойчивости соединения) спектральная зависимость коэффициента поглощения имеет вид, типичный для непрямого перехода. Таким образом, перед разработчиками элементов открывается возможность уменьшить поглощение излучения в слое твердого раствора благодаря использованию для материала окна-фильтра тонкого слоя с большим значением х или варизонной структуры малой толщины (предпочтительно с небольшим значением х у поверхности твердый раствор — воздух и высоким значением х у границы раздела твердый раствор — арсенид галлия). При этом необходимо отметить, что в случае сравнительно толстых слоев твердых растворов, получаемых технологически достаточно просто и имеющих преимущества с точки зрения создания надежных электрических контактов, целесообразно применять твердые растворы с обратной зависимостью состава от глубины или просто равномерные слои со сравнительно высоким значением х.

Рис. 4.9. Зависимость ширины запрещенной зоны полупроводникового соединения АlxGа1-xАs от его состава для различных видов оптических переходов

1 — прямые; 2 — смешанные

Pис. 4.10. Спектральная зависимость коэффициента собирания (а) солнечных элементов на основе арсенида галлия с гомогенным p-n-переходом (I) и гетеропереходом p-Ga0.3Al0,7As — p-GaAs — n-GaΛs (II) и схема расположения слоев в элементах обоих типов (б)

1 — просветляющие и защитные покрытия; 2 — верхний токосъемный контакт; 3 — широкозонное окно-фильтр из слоя твердого раствора p-AlxGa1-хAs; 4 — p-GaAs; 5 — базовый слой n-GaAs толщиной 250–300 мкм; 6 — тыльный контакт

На рис. 4.9 представлена зависимость ширины запрещенной зоны AlxGa1-xAs от состава данного полупроводникового соединения (от величины х) для случая прямых оптических переходов при любых значениях х (кривая 1) и для смешанной модели — прямых оптических переходов при х≤0,4 и непрямых при х≥0,4 (кривая 2).

Влияние толщины и состава верхних слоев на оптические характеристики и КПД солнечных элементов с широкозонным окном-фильтром из AlxGa1-xAs и р-п-переходом в находящемся под ним монокристаллическом арсениде галлия можно проследить, сравнивая результаты работ, проведенных различными исследователями. На рис. 4.10 представлены экспериментальные спектральные зависимости коэффициента собирания носителей заряда солнечного элемента из арсенида галлия обычной конструкции с гомогенным p-n-переходом (кривая 7) и гетероструктурой на поверхности (кривая 2). Солнечный элемент

1 ... 33 34 35 36 37 38 39 40 41 ... 50
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?