litbaza книги онлайнРазная литератураСолнечные элементы - Марк Михайлович Колтун

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 39 40 41 42 43 44 ... 50
Перейти на страницу:
слоев на подложке из арсенида галлия, например, как это показано на рис. 4.14. Верхний (2) и нижний (4) солнечные элементы в такой двухкаскадной системе соединяются последовательно с помощью туннельного п+—p+-перехода из AIGaAs (см. рис. 4.14, область 5). Экспериментально полученная в одной из зарубежных работ подобная структура генерировала высокое Ux.x (около 2,2 В), но сравнительно низкий ток, и КПД не превышал уровня 10–15 %, вероятно, из-за довольно большого сопротивления туннельного перехода (0,58 Ом).

Высокое качество полученных туннельных переходов позволяет ожидать новых результатов на пути создания монолитных каскадных солнечных элементов, и в последнее время появились сообщения о росте КПД таких элементов.

Значительно больших успехов добились исследователи, использующие два или три солнечных элемента, расположенных перпендикулярно друг другу. Солнечное излучение концентрируется с помощью линзы Френеля и падает на одно или два многослойных ди-хроических зеркала, которые расщепляют спектр на отдельные участки, направляя к каждому элементу излучение того спектрального состава, в котором данный элемент имеет максимальную чувствительность (рис. 4.15).

Для практической реализации таких систем большое значение имеет не только КПД отдельных солнечных элементов (причем они должны возможно более резко отличаться по области спектральной чувствительности), но и высокое качество, а также стабильность параметров (при длительном непрерывном освещении) применяемых дихроических зеркал, которые, как правило, изготавливаются нанесением в вакууме 17–19 (или более) чередующихся прозрачных пленок ZnS (показатель преломления n=2,3) и Na3AlF6 (n=1,35). Излучение, пропущенное зеркалом, проходит к солнечному элементу на основе арсенида галлия, а отраженное — к кремниевому элементу (см. рис. 4.15).

Рис. 4.14. Расположение слоев в монолитной каскадной структуре

1 — подложка из монокристаллического арсенида галлия n-типа;

2 — солнечный элемент из арсенида галлия с p-n-переходом в гомогенном материале; 3 — туннельный переход из сильнолегированного твердого раствора AlGaAs; 4 — солнечный элемент с гетеропереходом AlGaAs — GaAs и p-n-переходом в арсениде галлия; 5 — широкозонное окно-фильтр

Рис. 4.15. Каскадная система с двумя солнечными элементами и одним дихроическим зеркалом (а) и с тремя солнечными элементами и двумя дихроическими зеркалами (б)

1–3 — солнечные элементы; 4 — линза Френеля; 5–7 — дихроические зеркала

Двухкаскадная система с дихроическим зеркалом при 165-кратной концентрации наземного солнечного излучения с плотностью потока 894 Вт/м2 (спектр падающего излучения соответствовал условиям AM1,23) характеризуется, как показано в одной из работ, следующими параметрами солнечных элементов, измеренными при температуре обоих элементов 30o С (водяное охлаждение):

* F — коэффициент заполнения вольт-амперной характеристики солнечного элемента.

Полученный суммарный КПД двухкаскадной системы, как видно, составляет 28,5 %.

Улучшение качества дихроических зеркал и отдельных солнечных элементов дает возможность получить в таких системах с расщеплением спектра суммарный КПД 30–32 % при средних (50—100-кратных) и около 40 % при высоких (более 1000) концентрациях солнечного излучения.

Для создания каскадных систем с дихроическими зеркалами лучше всего использовать следующие полупроводниковые материалы: для Eg=0,7 эВ: Ge; для Eg= 1,1 эВ: Si, InxGa1-xAs, GaAl1-xSbx, GayIn1-yAs1-xPx, AlyGa1-yAs1-xSbx; для Eg=1,4 эВ: GaAs; для Eg=1.7 эВ: AlxGa1-xAs, GaAs1-xPx, AlyGa1-yAs1-xSbx.

Следует отметить, что системы с дихроическими зеркалами избавляют разработчиков элементов от необходимости решать сложную проблему, возникающую при изготовлении монолитных каскадных элементов, получаемых эпитаксиальным наращиванием слоев, — сочетать в каскадном элементе слои с близкими постоянными кристаллической решетки и коэффициентами термического расширения.

В будущем, возможно, вообще отпадет необходимость в использовании дихроических зеркал при применении для преобразования солнечного излучения и одновременного расщепления спектра солнечных элементов (см. с. 119), прозрачных в длинноволновой области за краем основной полосы поглощения с высоко-отражающим металлическим покрытием или зеркалом на тыльной поверхности.

Глава 5

СОЛНЕЧНЫЕ БАТАРЕИ

И НАЗЕМНЫЕ ФОТОГЕНЕРАТОРЫ

Жесткие и гибкие солнечные батареи с высоким отношением мощности к весу

Солнечные батареи космических аппаратов представляют собой сложные электромеханические устройства, обеспечивающие электрическое соединение солнечных элементов, их размещение на единой несущей основе, прочность и устойчивость всей конструкции при вибрации и маневрах, а также возможность ее раскрытия, монтажа и ориентации в условиях космоса.

Главные элементы конструктивной схемы ориентируемой солнечной батареи — несущая опора, или подложка, на которой монтируются солнечные элементы и межэлементные соединения, силовая конструкция (рамы, балки, мачты и т. п.), механизмы и силовые узлы системы раскрытия и ориентации.

В зависимости от механических характеристик несущей опоры, или подложки, солнечные батареи разделяют на конструкции с жесткой, полужесткой и гибкой несущими поверхностями.

Жесткая несущая конструкция солнечных батарей, как правило, состоит из двух плоских тонких листов и находящегося между ними сотового наполнителя. Она характеризуется весьма большой частотой собственных колебаний и высокой жесткостью при работе на изгиб, обеспечивающей малые прогибы панелей. Удельные характеристики таких солнечных батарей: 100–120 Вт/м2, 20–40 Вт/кг.

Гибкие солнечные батареи имеют несущую подложку, характеризуемую нулевой жесткостью на изгиб, развертываемую и удерживаемую в рабочем положении с помощью раскладных мачт, балок

1 ... 36 37 38 39 40 41 42 43 44 ... 50
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?