Шрифт:
Интервал:
Закладка:
472
Uberti M. (2012). The Merels Board Enigma. With the worldwide census. Marisa Uberti.
473
Berger F. (2004). From circle and square to the image of the world: a possible interpretation for some petroglyphs of merels boards / Rock Art Research, Vol. 21, Iss. 1, pp. 11–25 // https://web.archive.org/web/20041121040028/http://mc2.vicnet.net.au/home/aura/shared_files/Berger1.pdf
474
Berlekamp E. R., Conway J. H., Guy R. K. (1983). Winning ways for your mathematical plays: Games in particular. Acad. Pr // https://books.google.ru/books?id=1PfuAAAAMAAJ
475
Lanciani R. (1892). Gambling and Cheating in Ancient Rome / The North American Review, Volume 155 // https://archive.org/details/jstor-25102412/page/n1
476
Heimann F., Schädler U. (2014). The loop within circular three men’s morris / Game Studies, Vol. 8, pp. 51–61 // https://www.researchgate.net/publication/312118169_The_loop_within_circular_three_men's_morris
477
Murray H. J. R. (2015). A History of Chess. Skyhorse Publishing // https://books.google.ru/books?id=dNSBCgAAQBAJ
478
Bell R. C. (2012). Board and Table Games from Many Civilizations. Dover Publications // https://books.google.ru/books?id=2vvBAgAAQBAJ
479
* Пер. Татьяны Стамовой.
480
Стамова Т., Халтрин-Халтурина Е. (2011). Уильям Вордсворт. Прелюдия, или Становление сознания поэта. Фрагменты поэмы / Перевод Татьяны Стамовой. Вступление Елены Халтрин-Халтуриной / Иностранная литература. № 3 // http://magazines.russ.ru/inostran/2011/3/vo9.html
481
Notes and Queries, 2nd Series Volume VI 152, Nov. 27 1858 // https://archive.org/details/notesqueries2621unse/page/434
482
Wikipedia contributors. (2020, November 6). Tic-tac-toe. In Wikipedia, The Free Encyclopedia. Retrieved 02:40, November 12, 2020, from https://en.wikipedia.org/wiki/Tic-tac-toe
483
Monnens D. (2013). “I commenced an examination of a game called 'tit-tat-to'”: Charles Babbage and the “First” Computer Game / DiGRA Conference 2013 // http://www.digra.org/wp-content/uploads/digital-library/paper_436.pdf
484
Bateman C. (2014). Meet Bertie the Brain, the world’s first arcade game, built in Toronto / Spacing Toronto, August 13 // http://spacing.ca/toronto/2014/08/13/meet-bertie-brain-worlds-first-arcade-game-built-toronto/
485
Wolf M. J. P. (2012). Encyclopedia of Video Games: The Culture, Technology, and Art of Gaming. Greenwood Publishing Group // https://books.google.ru/books?id=deBFx7QAwsQC
486
Michie D. (1963). Experiments on the mechanization of game-learning // http://people.csail.mit.edu/brooks/idocs/matchbox.pdf
487
Brooks R. (2019). Interesting Stuff for Download / Rodney Brooks — Roboticist // http://people.csail.mit.edu/brooks/documents.html
488
* Пер. В. Филиппова.
489
Schwalbe U., Walker P. (1997, 1999). Zermelo and the Early History of Game Theory // http://abel.math.harvard.edu/~elkies/FS23j.03/zermelo.pdf
490
Aumann R. J. (1989). Game Theory / Eatwell J., Milgate M., Newman P. (1989). The New Palgrave: Game Theory, Macmillan Press, London.
491
Eichberger J. (1993). Game Theory for Economists, Academic Press, San Diego.
492
Hart S. (1992). Games in Extensive and Strategic Forms, in Robert J. Aumann and Sergiu Hart (eds.), Handbook of Game Theory, Volume 1, NorthHolland, Amsterdam.
493
Mas-Colell A., Whinston M. D., Green J. R. (1995). Microeconomic Theory, Oxford University Press, New York.
494
Dimand M. A., Dimand R. W. (1996). A History of Game Theory, Volume 1: From the Beginnings to 1945, Routledge, London.
495
Binmore K. (1992). Fun and Games: A Text on Game Theory, D. C. Heath and Company, Lexington
496
Zermelo E. (1913). Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels / Proceedings of the Fifth Congress Mathematicians (Cambridge 1912), pp. 501–504 // https://doi.org/10.1007/978-3-540-79384-7_9
497
Kőnig D. (1927). Uber eine Schlussweise aus dem Endlichen ins Unendliche / Acta Scientiarum Mathematicarum, Vol. 3, pp. 121–130.
498
Kalmár L. (1928, 1929), Zur Theorie der abstrakten Spiele / Acta Scientiarum Mathematicarum, Vol. 4, pp. 65–85.
499
Dimand M. A., Dimand R. W. (1997). The Foundations of Game Theory, Volume I. Edward Elgar, Aldershot.
500
Schwalbe U., Walker P. (1997, 1999). Zermelo and the Early History of Game Theory // http://abel.math.harvard.edu/~elkies/FS23j.03/zermelo.pdf
501
Godden K. (2007). The Longest Possible Chess Game / Blog at Chess.com // https://www.chess.com/blog/kurtgodden/the-longest-possible-chess-game
502
von Neumann J., Morgenstern O. (1944). Theory of Games and Economic Behavior. Science Editions, J. Wiley // https://archive.org/details/game_theo_econ/page/n139
503
Israel G., Gasca A. M. (2009). The World as a Mathematical Game: John von Neumann and Twentieth Century Science. Birkhäuser Basel // https://books.google.at/books?id=6o52lsjG83UC
504
* Маргиттаи означает «из Маргиты», а окончание –i — типичное окончание, используемое при образовании венгерских дворянских имён от названия местности; но семья Неймана не имела никакого отношения к городу Маргита, фамилию старший Нейман, по всей видимости, избрал по имени жены, а на выбранном гербе были изображены три маргаритки на зелёном поле.
505
Leonard R. (2010). Von Neumann, Morgenstern, and the Creation of Game Theory: From Chess to Social Science, 1900–1960. Cambridge University Press // https://books.google.ru/books?id=uV6sAwAAQBAJ
506
Aspray W. (1990). John Von Neumann and the Origins of Modern Computing. MIT Press // https://books.google.ru/books?id=M6DmngEACAAJ
507
Macrae N. (1992). John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence, and Much More. Pantheon Press // https://books.google.ru/books?id=ratFAAAAYAAJ
508
Brown T. A. (1941). Elementary Inequalities. The Mathematical Gazette, Vol. 25, Iss. 263, pp. 2–11 // https://doi.org/10.2307/3606471
509
Bellman R. (1954). Inequalities / Mathematics Magazine, Vol. 28, Iss.