litbaza книги онлайнДомашняяИстина и красота. Всемирная история симметрии - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 39 40 41 42 43 44 ... 99
Перейти на страницу:

Чтобы получить некоторое представление об этом соотношении, кратко осмотрим мою любимую группу — группу симметрий равностороннего треугольника. И зададимся наконец самым фундаментальным вопросом: что же, строго говоря, есть симметрия?

До Галуа все ответы на этот вопрос были довольно расплывчаты и включали в себя размахивание руками и апелляцию к таким свойствам, как изящество пропорции. С концепциями такого типа настоящей математики не построишь. После Галуа спустя недолгий период времени, на протяжении которого математический мир разбирался с общими идеями, стоящими за их очень конкретным применением, — возник простой и двусмысленный ответ. Во-первых, слово «симметрия» надо понимать как «некая симметрия», «одна из симметрий». Объекты не обладают одной-единственной симметрией; они часто имеют много различных симметрий.

Но что же тогда такое эти симметрии? Симметрия некоторого математического объекта — это преобразование, которое сохраняет структуру объекта. Через секунду я разверну это определение в нечто большее, но прежде всего надо заметить, что симметрия представляет собой скорее процесс, нежели объект. Симметрии Галуа являются перестановками (корней уравнения), а перестановка — это некий способ переупорядочить вещи. Строго говоря, это не само переупорядочивание, а правило, которое надо применить, чтобы добиться этого переупорядочения. Не блюдо, а рецепт.

Подобное различие может показаться мелочным занудством, но именно оно лежит в основе всего предприятия.

В определении симметрии имеются три ключевых слова: «преобразование», «структура» и «сохраняет». Позвольте объяснить их, используя пример равностороннего треугольника. У такого треугольника по определению все три стороны имеют одинаковую длину, а все три угла — одну и ту же величину, а именно 60°. Из-за этих свойств трудно отличить одну сторону от другой; фразы типа «самая длинная сторона» здесь ничего не значат. Углы также неразличимы. Как мы сейчас увидим, невозможность отличить одну сторону от другой или один угол от другого является следствием симметрий равностороннего треугольника. В действительности этим его симметрии и определяются.

Рассмотрим эти три слова по очереди.

Преобразование. Нам разрешается кое-что делать с нашим треугольником. В принципе имеется масса вещей, которые с ним можно проделать: согнуть его, повернуть на некоторые угол, смять его, растянуть, как если бы он был сделан из резины, покрасить в розовый цвет. Наш выбор, однако, более узок и ограничен вторым из наших слов.

Структура. Структура нашего треугольника состоит из математических свойств, которые полагаются существенными. Структура треугольника включает такие вещи, как «у него три стороны», «стороны — прямые линии», «одна сторона имеет длину 7,32 дюйма», «он располагается на плоскости вот в этом месте» и так далее. (В других областях математики существенные свойства могут оказаться другими. В топологии, например, существенно только то, что треугольник образует один замкнутый путь, а наличие трех углов и прямолинейность сторон не имеют значения.)

Сохраняет. Структура преобразованного объекта должна соответствовать структуре исходного. Преобразованный треугольник должен также иметь три стороны — так что сминание его исключается. Стороны должны оставаться прямыми, так что складывать нельзя. Одна сторона должна по-прежнему иметь длину 7,32 дюйма, так что растягивать треугольник тоже запрещено. Положение должно быть тем же самым, так что сдвиг на десять футов в сторону не дозволяется.

Цвет явным образом не упоминается в качестве структуры, так что окрашивание треугольника не имеет значения. Не то чтобы оно было под запретом — просто оно не составляет различия для геометрических целей.

Поворот треугольника на некоторый угол, однако, действительно сохраняет по крайней мере кое-что из структуры. Если вырезать равносторонний треугольник из картона, положить его на стол, а затем поворачивать, то он по-прежнему будет выглядеть как треугольник. У него будут три стороны, причем прямые, а их длины не изменятся. Однако положение треугольника на плоскости может оказаться иным, в зависимости от угла, на который его повернули.

Если я поверну треугольник, например, на прямой угол, то результат будет отличаться от первоначального. Стороны будут смотреть в других направлениях. Если вы закроете глаза, пока я буду его поворачивать, то, открыв их, сможете определить, что треугольник был повернут.

Истина и красота. Всемирная история симметрии

Поворот на прямой угол не является симметрией равностороннего треугольника.

Но если я поверну треугольник на 120°, вы не заметите никакой разницы между «было» и «стало». Чтобы показать, что я имею в виду, я тайно помечу углы кружками различного типа, так что мы сможем следить за тем, что куда отправляется. Эти кружки — только для нашей ориентации, они не составляют часть структуры, которая должна быть сохранена. Если вы закрываете глаза на кружки, если наш треугольник настолько лишен свойств, насколько это полагается всякому добропорядочному эвклидову объекту, то повернутый треугольник выглядит в точности как исходный.

Истина и красота. Всемирная история симметрии

Поворот на 120° является симметрией равностороннего треугольника.

Другими словами, поворот на 120° есть симметрия равностороннего треугольника. Преобразование (поворот) сохраняет структуру (форму и расположение).

Оказывается, что у равностороннего треугольника имеется ровно шесть различных симметрий. Вторая — это поворот на 240°. Еще три — отражения, под действием которых один из углов треугольника остается на месте, а два других меняются местами. А в чем состоит шестая симметрия? В неделании ничего: оставьте треугольник в покое. Это тривиально, однако же удовлетворяет условиям, требуемым от симметрии. На самом деле это преобразование удовлетворяет определению симметрии вне зависимости от того, какой объект рассматривается и какое свойство должно сохраняться. Если ничего не делать, то ничего и не меняется.

Эта тривиальная симметрия называется тождественной. Она может показаться не очень важной, но если от нее отказаться, то вся математика пойдет вкривь и вкось. Происходящее будет похоже на выполнение сложения чисел в отсутствие нуля или умножения в отсутствие единицы. Если же мы включаем тождественное преобразование, то все хорошо.

Истина и красота. Всемирная история симметрии

Шесть симметрий равностороннего треугольника.

Для равностороннего треугольника можно представлять себе единичный элемент как вращение на 0°. На рисунке изображены результаты применения шести симметрий к нашему равностороннему треугольнику. Это в точности шесть различных способов, которыми вырезанный из картона и вынутый из плоскости треугольник можно наложить на его исходное положение. Пунктирные линии показывают, где надо расположить зеркало, чтобы получить требуемое отражение.

1 ... 36 37 38 39 40 41 42 43 44 ... 99
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?