litbaza книги онлайнДомашняяИстина и красота. Всемирная история симметрии - Йен Стюарт

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 40 41 42 43 44 45 46 47 48 ... 99
Перейти на страницу:

Математики здесь встретились с необычной дилеммой. Они научились проводить различие между алгебраическими и трансцендентными числами и полагали, что это важно. Но они все еще не знали, существует ли хоть какое-нибудь трансцендентное число. В практическом плане предполагаемое различие могло оказаться бессодержательным.

Потребовалось время. Существование трансцендентных чисел было доказано лишь в 1844 году. Решающего прорыва в этой области добился Лиувилль. Ранее он извлек на свет божий из кипы академического хлама работы Галуа, а теперь сумел изобрести трансцендентное число. Оно выглядело следующим образом:

0,110001000000000000000001000…, —

где все более и более длинные последовательности нулей разделены отдельными единицами. Важное обстоятельство состоит в том, что количество нулей в этих последовательностях должно очень быстро возрастать.

Числа такого типа являются «почти» рациональными. Для них существуют необычайно точные рациональные приближения — главным образом из-за наличия длинных отрезков, состоящих из нулей. Например, в приведенном выше числе более длинный из таких отрезков состоит из 17 последовательных нулей, а это означает, что число, которое стоит перед этим, — то есть 0,110001 — служит намного лучшим приближением к числу Лиувилля, чем обычно получается для выбранной наугад десятичной дроби. Конечно, 0,110001, как и любая конечная десятичная дробь, рациональна — она равна 110001/1000000. Вместо точности в 6 десятичных знаков она дает точность в 23 десятичных знака. Следующая ненулевая цифра — это 1 на 24-м месте.

Лиувилль понял, что алгебраические числа, не являющиеся при этом рациональными, всегда довольно плохо приближаются рациональными. Дело не только в том, что такие числа иррациональны; для получения хорошего рационального приближения приходится использовать очень большие числа, чтобы записать близкую по величине дробь. Поэтому Лиувилль специально определил число, обладающее исключительно хорошими рациональными приближениями — слишком хорошими для того, чтобы это число могло быть алгебраическим. Поэтому оно должно было быть трансцендентным.

Единственное, за что можно критиковать эту умную идею, — это то, что число Лиувилля является очень искусственным. Не видно его связи с чем бы то ни было еще в математике. Оно взято из воздуха с единственной целью получить очень хорошие приближения рациональными числами. Оно было бы никому не интересно, если бы не это его единственное замечательное свойство: про него удается доказать, что оно трансцендентно. Математики, таким образом, убедились в существовании трансцендентных чисел.

Оставался вопрос, существуют ли интересные трансцендентные числа, но по крайней мере теория трансцендентных чисел приобрела смысл. Дело было за тем, чтобы наполнить ее интересным смыслом. Прежде всего, трансцендентно ли π? Если да, то вопрос с древней задачей о квадратуре круга решается нокаутом. Все числа, допускающие построение, являются алгебраическими, следовательно, трансцендентные построить невозможно. Если π трансцендентно, то квадратура круга невозможна.

Число π вполне заслуженно знаменито из-за своей связи с окружностями и сферами. Кроме него математика содержит и другие замечательные числа, наиболее важное из которых — вероятно, даже более важное, чем π — известно как e. Его численное значение приближенно равняется 2,71828, и, как и π, оно иррационально. Это число появилось в 1618 году, на заре истории логарифмов; оно правильно определяет банковский процент, если вычислять сложные проценты по все более и более коротким отрезкам времени. В письме Лейбница к Гюйгенсу от 1690 года оно было обозначено буквой b. Обозначение e было введено Эйлером в 1727 году и впервые появилось в печати в «Механике» в 1736-м.

Используя комплексные числа, Эйлер открыл замечательное соотношение между e и π, которое часто называют самой прекрасной формулой во всей математике. Эйлер доказал, что eiπ = −1. (Эта формула допускает интуитивное объяснение, но там используются дифференциальные уравнения.) После сделанного Лиувиллем открытия следующий шаг к доказательству трансцендентности π занял еще 29 лет, и доказательство относилось к числу e. В 1873 году французский математик Шарль Эрмит доказал, что e трансцендентно. Жизненный путь Эрмита удивительно похож на жизненный путь Галуа — он поступил в Коллеж Людовика Великого, его учил Ришар, он пытался доказать неразрешимость уравнения пятой степени и хотел учиться в Политехнической школе. Но в отличие от Галуа, буквально цепляясь зубами, он туда все же попал.

Один из учеников Эрмита, знаменитый математик Анри Пуанкаре, заметил, что мозг Эрмита работал необычным образом: «Назвать Эрмита логиком! Ничто, на мой взгляд, не лежит дальше от истины. Создавалось впечатление, что методы возникают у него в голове каким-то непостижимым образом». При доказательстве трансцендентности числа e это сослужило Эрмиту добрую службу. Доказательство представляло собой развитое обобщение данного Ламбертом доказательства иррациональности числа π. В нем также использовался анализ; предлагалось вычислить некий интеграл двумя способами; и если бы e было алгебраическим, то два полученных ответа не совпадали бы: один равнялся бы нулю, а другой нет. Трудный шаг состоял в том, чтобы найти, какой именно интеграл надо вычислить.

Доказательство как таковое занимает около двух печатных страниц. Но что это за чудесные страницы! Можно было бы искать всю жизнь и не найти правильный интеграл.

Число e, по крайней мере, представляет собой «естественный» объект в математических исследованиях. Оно присутствует в математике повсеместно, и оно жизненно важно, в особенности в комплексном анализе и в теории дифференциальных уравнений. Хотя Эрмит и не продавил задачу о числе π, он по крайней мере продвинулся вперед по сравнению с достаточно искусственным примером Лиувилля. Теперь математики знали, что вполне обыденные математические операции естественным образом приводят к числам, которые оказываются трансцендентными. Один из последователей Эрмита вскоре использовал его идеи, чтобы доказать, что среди этих чисел есть и число π.

Карл Луис Фердинанд фон Линдеманн родился в 1852 году в семье филолога Фердинанда Линдеманна и дочери директора школы Эмили Крузиус. Фердинанд переходил с одного места работы на другое и, в частности, побывал директором газового завода.

Как и многие студенты в Германии в конце девятнадцатого столетия, Линдеманн-младший переезжал из одного университета в другой — из Геттингена в Эрланген, оттуда в Мюнхен. В Эрлангене он защитил диссертацию по неэвклидовой геометрии под руководством Феликса Клейна. Он путешествовал за границу, в Оксфорд и Кембридж, а затем в Париж, где познакомился с Эрмитом. В 1879 году, защитив диссертацию, дающую право преподавать в высшем учебном заведении, он стал профессором в университете Фрайбурга. Четыре года спустя он перебрался в Кенигсбергский университет, где встретил свою будущую жену Элизабет Кюсснер — дочь преподавателя, игравшую в театре. Десять лет спустя он стал полным профессором в Мюнхенском университете[33].

1 ... 40 41 42 43 44 45 46 47 48 ... 99
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?