litbaza книги онлайнДомашняяРитм вселенной. Как из хаоса возникает порядок - Стивен Строгац

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 37 38 39 40 41 42 43 44 45 ... 112
Перейти на страницу:

Члены Королевского общества были обескуражены таким объяснением – и вовсе не потому, что сомневались в его правильности. Напротив, они опасались, что это объяснение правильно! В протоколе собрания Королевского общества от 8 марта 1665 г. говорится, что «некоторые из присутствовавших усомнились в точности хода этих часов во время морского плавания, если даже столь слабые, почти неощутимые воздействия могли повлиять на их ход». Иными словами, сама логика рассуждений Гюйгенса указывала на чрезвычайную чувствительность маятникового механизма. Однако именно высокая чувствительность такого механизма не позволяла использовать его для определения долготы на кораблях.

Свойство взаимной симпатии маятниковых механизмов, которое еще пару недель назад казалось Гюйгенсу столь восхитительным, теперь выглядело как досадная помеха на пути к решению задачи определения географической долготы на кораблях. Впрочем, ему так и не удалось решить эту задачу. Лишь в середине XVIII века Джон Гаррисон, англичанин, не имевший формального образования, сконструировал ряд моделей морских часов, детали которых были изготовлены из разных металлов, не подверженных коррозии и подобранных таким образом, чтобы взаимно компенсировать расширение и сжатие друг друга, вызванное температурными колебаниями. Четвертая модель его хронометра – шедевр, который он назвал H-4 – содержала детали, изготовленные из алмаза и рубина, что позволило снизить почти до нуля силу трения. Его вес составлял лишь три фунта, а диаметр – пять дюймов, то есть не больше, чем крупные карманные часы. В процессе морских испытаний, проводившихся в 60-е годы XVIII века, географическую долготу удавалось определить с точностью до 10 миль. Этого оказалось вполне достаточно, чтобы получить премию британского парламента в размере 20 тысяч фунтов стерлингов, что эквивалентно нескольким миллионам долларов в наше время.

По иронии судьбы, чем больше времени проходит с момента, когда удалось окончательно решить задачу вычисления географической долготы на кораблях, тем сильнее науку интересует феномен взаимной симпатии часов. Сколь бы бесспорным ни был научный гений Гюйгенса (Ньютон называл его «Суммусом Гюйгением»), даже он не смог оценить подлинное значение того, что Вселенная открыла ему в дни его вынужденного затворничества. Но сейчас, по прошествии более чем 300 лет с того времени, мы в состоянии оценить его открытие по достоинству. Гюйгенс открыл один из самых универсальных механизмов природы – синхронизм в неживой природе.

Нам кажется само собой разумеющимся, что мы можем петь и танцевать вместе с другими людьми, шагать в ногу с ними, в унисон хлопать в ладоши. Синхронизм – наша вторая природа. Но поскольку он дается нам очень легко, мы плохо представляем себе, какие требования синхронизм предъявляет к нам. По-видимому, он требует от нас хотя бы минимального уровня интеллекта, способности планировать свои действия во времени и прогнозировать действия других людей. Именно поэтому публикации о синхронном мерцании тысяч светлячков столь долго вызывали скептицизм ученых и именно поэтому на нас производит столь сильное впечатление синхронное стрекотание сверчков или способы ухаживания самцов манящего краба, которые стараются привлечь самок, размахивая в унисон своими гигантскими клешнями.

Тем не менее эти чудеса синхронизма в живой природе всегда можно объяснить результатами эволюции, следствием миллионов лет естественного отбора. В этом свете должно быть совершенно понятно, почему открытие Гюйгенса, совершенное благодаря его интуитивной прозорливости, оказалось столь шокирующим.

Дело в том, что он обнаружил феномен синхронизма в неживой природе – у маятниковых часов.

Бездушные, безжизненные предметы могут самопроизвольно достигать синхронизма.

Взаимная симпатия маятниковых часов показала нам, что способность к синхронизму не зависит от наличия интеллекта, души или естественного отбора. Она возникает из самого глубинного источника всего сущего – из законов математики и физики.

Этот вывод породил глубочайшее почтение к синхронизму в технологии. Например, если бы не синхронизм, у нас не было бы лазерной хирургии глаза, проигрывателей компакт-дисков, сканеров, которыми пользуются кассиры в супермаркетах, и прочих устройств на основе лазеров, которые применяются в нашей повседневной жизни. Интенсивный, когерентный, тонкий, как иголка, лазерный луч является результатом синхронного испускания световых волн триллионами атомов. Сами по себе эти атомы ничем не отличаются от атомов в обычной лампочке накаливания – хитрость заключается лишь в способе их взаимодействия. Вместо света, создаваемого какофонией разных цветов и фаз, у лазерного света лишь один цвет и одна фаза – как у хора, поющего лишь одну ноту. Можно добиться, что этот свет будет очень сильным (хотя это вовсе необязательно); он сосредоточен в узком луче и может быть сфокусирован в виде крошечного светового пятна. Напротив, силу обычного света можно существенно увеличить лишь за счет приложения очень большой энергии (возможно, настолько большой, что приложение ее станет для нас непозволительной роскошью); обычный свет сильно рассеивается, а его интенсивность резко снижается с увеличением расстояния от источника света; к тому же обычный свет трудно сфокусировать. Все эти преимущества лазерного света позволяют легко управлять им. Например, хирургические лазеры создают пятно сконцентрированной энергии, диаметр которого оказывается меньше толщины режущей кромки обычного хирургического скальпеля и может добираться до больных тканей в таких местах, куда обычным хирургическим скальпелем добраться невозможно[109]. Кроме того, лазерная хирургия почти бескровна, поскольку свертывание крови происходит практически мгновенно: в процессе разрезания ткани лазерный луч прижигает ее.

В течение многих лет после изобретения лазера никто не знал, для каких целей можно использовать это изобретение. Кое-кто, посмеиваясь, описывал лазер как решение, для которого еще предстоит найти задачу. Тем не менее этот плод фундаментальных исследований, родившийся из чистого любопытства ученых, которым просто хотелось исследовать поведение световых волн в синхронизме, стал одним из самых универсальных устройств нашего времени, область применения которого никто не мог предвидеть. На торжественном вечере, устроенном в честь сорокалетия лазера, Артур Шавлов, лауреат Нобелевской премии по физике за 1981 г. (в частности, за совместную с Чарльзом Таунзом разработку лазера), вспоминал:

Мы полагали, что он может найти применение в научных исследованиях, а также в системах связи, однако мы не имели в виду какие-то конкретные его применения. Если бы имели в виду что-то конкретное, это могло бы лишь помешать нам… Некоторые из вас, возможно, уже слышали мое высказывание о том, что, хотя в газетах много пишут о так называемых «лучах смерти», в действительности никаких таких «лучей смерти», насколько мне известно, не существует. Но одним из первых практических применений лазеров было их использовании в хирургии сетчатки глаза для предотвращения слепоты, вызванной отслоением сетчатки. Ни Чарли, ни мне никогда не приходилось слышать о выполнении хирургических операций для предотвращения слепоты, вызванной отслоением сетчатки глаза, а если бы слышали, то, наверное, не стали бы заниматься такой ерундой, как индуцированное излучение из атомов[110].

1 ... 37 38 39 40 41 42 43 44 45 ... 112
Перейти на страницу:

Комментарии
Минимальная длина комментария - 20 знаков. Уважайте себя и других!
Комментариев еще нет. Хотите быть первым?