Шрифт:
Интервал:
Закладка:
В этих словах – «индуцированное излучение из атомов» – заключен принцип действия лазера. Правда, – и мне стыдно сознаться в этом – мне не менее десяти раз пытались объяснить принцип действия лазера, но эти объяснения так и не закрепились у меня в голове. Все эти рассуждения о возбужденных атомах и инверсиях населенностей энергетических уровней[111] входят в одно мое ухо, задерживаются в голове на несколько секунд, рождая некое смутное и весьма приблизительное понимание, и благополучно выходят из другого уха. Я не теряю надежды подыскать какую-нибудь простую аналогию, которая будет иметь смысл для меня, – что-нибудь такое, что я могу нарисовать в своем воображении и закрепить в памяти, – но чувствую, что это будет дьявольски сложно. Если читатель понимает принцип действия лазера – или если ему, на самом деле, все равно, как работает лазер, – он может не читать следующий раздел.
Вообразите, что однажды утром вы проснулись на какой-то другой планете и вашему взору открывается безжизненная пустыня. Вокруг вас нет ничего, кроме арбуза, рядом с которым стоит табуретка. Вас, естественно, интересует, зачем здесь табуретка. В поисках ответа на этот вопрос вы берете в руки арбуз и кладете его на табуретку. После этого арбуз начинает проявлять беспокойство, ерзая и слегка подпрыгивая на табуретке. Почти сразу же он сваливается с табуретки и раскалывается на мелкие кусочки. Расколовшись, он сразу же выстреливает семечком, которое со скоростью пули вылетает в случайном направлении.
Описанная мною картина может служить некой аналогией того, как вырабатывается обычный свет. Допустим, вы включили свой тостер и его нагревательный элемент испускает яркий красный свет. Причина этого свечения заключается в том, что электрический ток, проходя через нагревательный элемент, накаляет его. Нагрев переводит атомы нагревательного элемента на более высокий энергетический уровень (аналогией такого перевода на более высокий энергетический уровень может служить поднятие вами арбуза на табуретку). Спустя короткое время каждый разогретый атом самопроизвольно соскакивает на свой самый нижний энергетический уровень – то есть переходит в свое «базовое состояние» – и отдает свою избыточную энергию, испуская фотон (световую частицу) в процессе, называемом спонтанным испусканием; это подобно тому, как беспокойно ерзающий на табуретке арбуз скатывается с нее, раскалывается на части и выстреливает семечком. Накаленный нагревательный элемент излучает красный свет, поскольку возбужденные атомы нагревательного элемента самопроизвольно испускают множество красных фотонов.
Продолжая исследовать планету, на которой вы проснулись, вы подходите к краю обширного поля, на котором разбросано огромное множество арбузов, причем рядом с каждым арбузом стоит табуретка. Вас начинает разбирать любопытство: а что, если семечко, вылетевшее со скоростью пути из расколовшегося арбуза, попадет в другой арбуз? Чтобы инициировать этот процесс, вы поднимаете один из арбузов и кладете его на табуретку, которая стоит рядом с ним. Вскоре этот арбуз падает, раскалывается и выстреливает семечком в произвольном направлении, однако, на ваше счастье, на пути его движения оказывается другой арбуз, лежащий на земле (хотя речь идет о неизвестной планете, будем называть ее поверхность землей). Как только арбуз, оказавшийся на пути семечка, вберет в себя энергию удара, он вспрыгнет на свою табуретку и сразу же начнет ерзать на ней, после чего скатится с нее, расколется на части, выстрелит своим собственным семечком – разумеется, в произвольном направлении. Это будет поистине завораживающее зрелище: одно семечко будет инициировать выстреливание другого семечка, арбузы будут вспрыгивать на свои табуретки, а затем скатываться с них… Подняв первый арбуз, вы непреднамеренно запустили цепную реакцию – правда, очень слабую и невзрывоопасную: ее масштаб поддерживается на постоянном уровне, каждый раз выстреливает лишь одно семечко. Правда, нужно заметить: если какое-либо из выстреливших семечек не попадет ни в один из арбузов, наша цепная реакция полностью «заглохнет».
Этот каскадный процесс представляет немалый интерес, но он не является аналогией лазера. Он не обеспечивает усиления света, поскольку не увеличивает количество фотонов в воздухе. Мы упустили из виду лишь один – но очень важный – аспект этой «физики арбузов»: что произойдет, если семечко попадет в арбуз, который находится на табуретке, а не на земле? Чтобы ответить на этот вопрос, вы одномоментно поднимаете много арбузов и кладете их на соответствующие табуретки (правда, для этого вам придется очень быстро перебегать от арбуза к арбузу, чтобы успеть уложить их на табуретки еще до того, как хотя бы один из них свалится на землю). Потрудившись таким образом, вы быстро отбегаете в сторону и наблюдаете за результатами своих усилий. Со временем какой-то из арбузов обязательно упадет на землю, выстрелит семечком и попадет в какой-то другой из арбузов, уложенных вами на табуретки. (Вероятность такого попадания довольно высока, поскольку вы успели водрузить на табуретки изрядное количество арбузов.) После этого начинается самое интересное. Вместо того чтобы застрять в арбузе, семечко, нанесшее удар, пронизывает арбуз, не изменив направление своего полета; еще более удивительным оказывается то, что теперь это семечко продолжает свое движение в компании с другим семечком, которое является точной его копией. Иными словами, происходит клонирование самечка, которое нанесло удар по арбузу. То есть было одно семечко, летящее в определенном направлении, а теперь их стало два.
Именно в этом и заключается принцип действия лазера. Этот принцип действия называется индуцированным излучением, и вы видите, что он обеспечивает возможность увеличения количества фотонов, движущихся в определенном направлении. Каждый раз, когда фотон попадает в возбужденный атом, он удваивается, усиливая количество света, движущегося в данном направлении. Теперь читателям должно быть понятно, откуда взялось название лазер (laser): Light Amplification by Stimulated Emission of Radiation (усиление света посредством индуцированного излучения). Об индуцированном излучении (а не о самопроизвольном излучении) говорится потому, что входящий фотон заставляет возбужденный атом выстрелить еще одним фотоном.
Однако самое главное здесь заключается в том, что новый фотон неотличим от породившего его фотона. Если эти фотоны представлять себе не как частицы, а как крошечные световые волны, то они оказываются идеально синхронизированными. Все их пики и впадины оказываются строго выровненными по времени, а это означает, что они являются носителями света одного и того же цвета, который движется в одном и том же направлении и с одной и той же фазой.
Руководствуясь логикой здравого смысла, нам не понять возможность индуцированного излучения, как нельзя понять на основе той же логики здравого смысла возможность появления нового фотона, представляющего собой точную копию «старого» фотона. Этот феномен является следствием «нелогичной логики» квантовой механики, физики атомного и субатомного мира, не подчиняющегося логике здравого смысла. Эйнштейн открыл теоретическую возможность индуцированного излучения еще в 1917 г., но прошло еще 43 года, прежде чем ученые поняли, как можно использовать индуцированное излучение для создания первого в мире действующего лазера[112].