Шрифт:
Интервал:
Закладка:
Внимание! Начинается новое упражнение. Забавно! Очень забавно! Знаки плюс стали между одинаковыми буквами. Сейчас сложились семь буковок а, и… о чудо! Вместо семи осталась только одна. Остальные шесть исчезли на наших глазах, а вместо них на поле появилось число Семь. Оно стало слева от буквы а, и весь стадион хором прочитал: «семь а».
Это волшебное алгебраическое упражнение называется приведением подобных. Оно возможно только тогда, когда все слагаемые действительно подобны, то есть совершенно одинаковы. Какая экономия места, времени и чернил! В Аль-Джебре очень любят экономию. В самом деле, к чему писать
a + a + a + a + a + a + a,
если можно записать коротко и ясно:
7а.
Семёрка немного важничает. Оно и понятно: ведь она одна заменила шесть одинаковых букв и ей присвоено почётное звание числового коэффициента при букве а.
Ага! Другим буквам это тоже понравилось. Они просят плюсы занять места между ними. И вот число букв стремительно уменьшается. Вместо них на поле появляются числа-коэффициенты. Вместе с оставшимися буквами они образуют одночлены:
12b, 8a, 24abс, ЗЬс и так далее.
Их зорко охраняют рыцари-коэффициенты.
Упражнениям нет конца! Только что на поле образовался многочлен
abc + abc + abc + abc + abc + abc,
как мигом произошло приведение подобных и появился верный рыцарь — коэффициент Шесть:
6 abc.
Но что это? Оркестр замолкает… Понимаю: сейчас произойдёт перегруппировка и начнётся новое упражнение. В самом деле: минусы и плюсы покидают поле под дружные аплодисменты. Буковки снова образовали пёстрый прямоугольник. Но теперь в первом ряду стоят буквы в зелёном, во втором — в красном, в третьем — в светло-жёлтом. Они повторяют самое первое упражнение — перемножение одночленов. Только теперь все сомножители одинаковые.
И опять происходят чудеса. Как только две одинаковые буквы перемножатся, одна из них сейчас же исчезает, а на поле появляется число Два. Буква протягивает руку, и Двойка ловко вскакивает к ней на ладошку:
а2.
Вы думаете, число Два называется коэффициентом? Ничего подобного! Это показатель степени. Вы уже с ним знакомы. Ведь упражнение, которое сейчас проделывают буквы, — это возведение в степень!
Вот перемножились три b и получилось Бэ в кубе:
Ь3.
Десять с, перемножившись, образовали одночлен — Цэ в десятой степени:
с10.
Одна комбинация сменяется другой. Перед нами возникают:
а25, Ь40, с16, а6.
И вот появляется Цэ в степени эн:
сп.
Это уже что-то новое. Правда, только на первый взгляд. Мы ведь уже знаем, что буквами обозначаются числа. Цэ в энной степени означает Цэ, возведённое в любую степень. Подставьте вместо эн любое число — и ответ готов.
Музыканты после небольшой паузы снова заиграли вальс. Начались самые пластичные, самые замысловатые гимнастические упражнения: умножение многочленов на одночлен.
Вот уже образовались двучлены:
а + Ь, а + с,
потом трёхчлены:
а + b + с
и много других. Сейчас они начнут умножаться на одночлены… Но в чём дело? Произошла какая-то заминка. Музыка смолкла. Ага! Теперь всё ясно: оказывается, многочлены не могут ни на что умножаться, если их предварительно не заключить в скобки. Иначе может выйти ужасная путаница: никто не узнает, где тут одночлен, а где многочлен.
На поле появляются круглые скобки. Они становятся по бокам каждого многочлена. Ну вот, всё в порядке, можно продолжать.
Начинается представление, под названием «Хитрый обманщик».
На поле появляется выражение:
(а + Ь) с.
Цэ стучится в скобку, как в дверь.
Цэ. Хозяева дома?
А + Бэ (вместе). Да! А кто это?
Цэ. Это я, Цэ.
А + Бэ. А с вами никого нет?
Цэ (невинным голосом). Никого.
А + Бэ. Тогда входите.
Скобки открываются, Цэ входит и… раздваивается. Одно Цэ подходит к А, другое — к Бэ. И вот мы уже видим новую сумму:
ас + Ьс.
Все негодуют. Свист, крики:
— Гоните обманщика!
А + Бэ (вместе). На помощь! Спасите!!
Вбегают дружинники и выносят отчаянно сопротивляющихся Цэ за скобки. Здесь обе буквы снова превращаются в одно Цэ.
Обманщик наказан. Справедливость торжествует. На поле снова красуется прежнее выражение:
(а + Ь) с.
Пьеса имеет шумный успех. Артистов вызывают много раз, точнее, эн раз — п раз.
Сказав так, я никого не обману, и дружинникам не придётся выносить меня за скобки.
Дорогие радиослушатели! Как видно, эти упражнения никогда не кончатся, а я уже устал. Очень прошу вас, возьмите карандаши и бумагу и придумайте сами пример на перемножение многочленов.
До свидания.
Репортаж с Центрального стадиона Аль-Джебры вёл
Сева.
Пекари-жонглёры
(Снова Сева — Нулику)
Ну как, Нулик, здорово у меня вышло? Конечно, у того комментатора, который вёл передачу со стадиона, получалось лучше. А по мне сойдёт и так.
А сейчас я тебе своими словами расскажу, что было дальше.
По радио объявили: «Следующий номер нашей программы — Весёлые Пекари! Высший класс жонглирования! Перемножение и деление степеней!»
На зелёное поле выбежали три буквы Цэ. Все они были в белых поварских колпаках, у каждой палка, а на палке кольца — похоже на детские пирамидки. Только там кольца разноцветные, одно другого меньше, а здесь одинаковые, золотистые, как толстенькие поджаристые бублики.
Это и впрямь были бублики с маком! У одного пекаря — два бублика, у другого — три. У третьего колец на палке не было.
Заиграла музыка.
Первый пекарь снял с палки верхнее кольцо и ловко метнул. Кольцо очертило в воздухе плавную дугу и угодило на пустую палку третьего пекаря. Вслед за первым кольцом туда же полетело второе. То же самое сделал другой пекарь, и вот уже у третьего пекаря на палке все пять колец, а первые два пекаре остались ни с чем.
Потом жонглёры перестроились. Теперь у одного на палке было три кольца, у другого — шесть, у третьего опять ничего. Снова заиграла музыка, замелькали кольца. И опять у третьего пекаря на палке — девять бубликов, а у других — ничего.
— Чистая работа, — сказал Дэ, —