Шрифт:
Интервал:
Закладка:
Однако теория сродства резко отличала физические смеси от химических соединений, причём производила это способом, который сделался необычным после признания работ Дальтона. Химики XVIII века признавали два вида процессов. Когда смешивание вызывало выделение тепла, света, пузырьков газа или какие-либо подобные эффекты, то в этом случае считалось, что происходит химическое соединение. Если, с другой стороны, частицы в смеси можно было различить визуально или отделить механически, то это было лишь физическое смешивание. Но в огромном числе промежуточных случаев (растворение соли в воде, сплавы, стекло, кислород в атмосфере и так далее) столь грубые критерии приносили мало пользы. Руководимые своей парадигмой, большинство химиков рассматривали весь этот промежуточный ряд как химический, потому что процессы, свойственные ему, целиком управлялись силами одного и того же типа. Растворение соли в воде, кислорода в азоте как раз давали такой же пример химического соединения, как и соединение, образованное в результате окисления меди. Аргументация в пользу того, чтобы рассматривать растворы как химические соединения, была очень веской. Теория сродства в свою очередь хорошо подтверждалась. Кроме того, образование соединений объяснялось наблюдаемой гомогенностью раствора. Например, если кислород и азот были только смесью, а не соединены в атмосфере, тогда более тяжёлый газ, кислород, должен был опускаться на дно. Дальтон, который считал атмосферу смесью, никогда не мог удовлетворительно объяснить тот факт, что кислород ведёт себя иначе. Восприятие его атомистической теории в конце концов породило аномалию там, где её до того не было[129].
Невольно хочется сказать, что отличие взглядов химиков, которые рассматривали растворы как соединения, от взглядов их преемников касалось только определений. В одном отношении дело могло обстоять именно таким образом. Но это справедливо не в том смысле, что делает определения просто конвенционально удобными. В XVIII веке химики не могли в полной мере отличить с помощью операциональных проверок смеси от соединений, возможно, их и нельзя было отличить на тогдашнем уровне развития науки. Даже если химики прибегали к таким проверкам, они должны были искать критерий, который позволил бы рассматривать такой раствор как соединение. Различение смеси и раствора составляло элемент их парадигмы — элемент того способа, которым химики рассматривали всю область исследования, — и в этом качестве он обладал приоритетом по отношению к любому отдельно взятому лабораторному эксперименту, хотя и не по отношению к накопленному опыту химии в целом.
Но поскольку химия рассматривалась под таким углом зрения, химические явления стали примерами законов, отличных от тех, которые возникли с принятием новой парадигмы Дальтона. В частности, пока растворы рассматривались как соединения, никакие химические эксперименты, сколько бы их ни ставили, не могли сами по себе привести к закону кратных отношений. В конце XVIII века было широко известно, что некоторые соединения, как правило, характеризовались кратными весовыми отношениями своих компонентов. Для некоторых категорий реакций немецкий химик Рихтер получил даже дополнительные закономерности, в настоящее время включаемые в закон химических эквивалентов[130]. Но ни один химик не использовал эти закономерности, если не считать рецепты, и ни один из них почти до конца века не подумал о том, чтобы обобщить их. Если и наблюдались очевидные контрпримеры, подобно стеклу или растворению соли в воде, то всё же ни одно обобщение не было возможно без отказа от теории сродства и без перестройки концептуальных границ области химических явлений. Такое заключение стало неизбежным к самому концу столетия после знаменитой дискуссии между французскими химиками Прустом и Бертолле. Первый заявлял, что все химические реакции совершались в постоянных пропорциях, а второй отрицал это. Каждый подобрал внушительное экспериментальное подтверждение для своей точки зрения. Тем не менее два учёных спорили друг с другом, хотя результаты их дискуссии были совершенно неубедительны. Там, где Бертолле видел соединение, которое могло менять пропорции входящих в него компонентов, Пруст видел только физическую смесь[131]. Этот вопрос невозможно было удовлетворительно решить ни экспериментом, ни изменением конвенционального определения. Два исследователя столь же фундаментально расходились друг с другом, как Галилей и Аристотель.
Такова была ситуация в те годы, когда Дальтон предпринял исследование, которое в конце концов привело его к знаменитой атомистической теории в химии. Но до самых последних стадий этих исследований Дальтон не был химиком и не интересовался химией. Он был метеорологом, интересующимся (для себя) физическими проблемами абсорбции газов в воде и воды в атмосфере. Частью потому, что его навыки были приобретены для другой специальности, а частично благодаря работе по своей специальности он подходил к этим проблемам с точки зрения парадигмы, отличающейся от парадигмы современных ему химиков. В частности, он рассматривал смесь газов или поглощение газов в воде как физический процесс, в котором виды сродства не играли никакой роли. Поэтому для Дальтона наблюдаемая гомогенность растворов была проблемой, но проблемой, которую, как он полагал, можно решить, если будет возможность определить относительные объёмы и веса различных атомных частиц в его экспериментальной смеси. Требовалось определить эти размеры и веса. Но данная задача заставила Дальтона в конце концов обратиться к химии, подсказав ему с самого начала предположение, что в некотором ограниченном ряде реакций, рассматриваемых как химические, атомы могут комбинироваться только в отношении один к одному или в некоторой другой простой, целочисленной пропорции[132]. Это естественное предположение помогло ему определить размеры и веса элементарных частиц, но зато превратило закон постоянства отношений в тавтологию. Для Дальтона любая реакция, компоненты которой не подчинялись кратным отношениям, не была ещё ipso facto[133] чисто химическим процессом. Закон, который нельзя было установить экспериментально до работы Дальтона, с признанием этой работы становится конститутивным принципом, в силу которого ни один ряд химических измерений не может быть нарушен. После работ Дальтона те же, что и раньше, химические эксперименты стали основой для совершенно иных обобщений. Это событие может служить для нас едва ли не лучшим из типичных примеров научной революции.
Излишне