Шрифт:
Интервал:
Закладка:
Времена стандартных бизнес-процессов остались в прошлом; компании больше не могут ставить своей целью простое воспроизведение лучших в своем роде процессов лидера отрасли. Именно поэтому так важно экспериментирование. Конкуренция требует, чтобы руководители компаний приводили бизнес-процессы в соответствие со спецификой своего бизнеса. Однако загвоздка в том, что внедрение нестандартных процессов требует от руководителей и лидеров глубокого знания своих сотрудников и корпоративной культуры в целом, чтобы понимать, как и когда начинать эксперименты. Например, чтобы заручиться поддержкой сотрудников, руководители должны ставить четкие цели и не мешать совершать ошибки и промахи. Не стоит забывать, что в науке эксперимент, не подтвердивший правильность гипотезы, не называют неудачным. Полученный в ходе такого эксперимента результат называют данными.
Перед многими компаниями стоит сложная лидерская задача: сформировать корпоративную культуру, способствующую внедрению ответственного искусственного интеллекта. Достичь этой цели непросто, поскольку многие люди не доверяют технологиям, а обеспокоенность сотрудников возможным упразднением рабочих мест часто усиливает такие опасения. Чтобы помочь сотрудникам привыкнуть к своим коллегам в лице систем искусственного интеллекта, необходимо задействовать функционал и аспекты взаимодействия обеих частей «недостающей середины». Как мы увидим немного позже, навыки специалистов по обучению, разъяснению и экспертов по устойчивости играют решающую роль, однако не менее важен положительный опыт использования искусственного интеллекта. Сообщите сотрудникам, что внедряете искусственный интеллект для замены определенных задач и переосмысления текущих бизнес-процессов. Продемонстрируйте, что инструменты искусственного интеллекта могут расширить возможности сотрудников и сделать их повседневную работу менее утомительной и более увлекательной.
В настоящее время в бизнес-среде дело обстоит следующим образом. В 2017 году, выступая в конгрессе США по вопросу безопасности автономных транспортных средств, руководитель Toyota Research Institute Джилл Пратт сказал законодателям, что люди склонны прощать ошибки человеку в большей степени, чем машине[130]. Результаты исследований подтверждают противоречивость и неоднозначность нашего доверия машинам. Согласно статье, опубликованной в 2009 году, когда люди считают, что биржевые отчеты составлены человеком, их оценки стоимости ценных бумаг будут колебаться сильнее, чем когда отчет формировался с помощью статистических методов прогнозирования. В статье, вышедшей в 2012 году, отмечено, что люди считают решения врачей более точными и этичными, чем решения, принимаемые компьютером. Даже доказательства обратного не влияют на мнение людей. В рамках проведенного в 2014 году исследования ученые выяснили, что «при совершении одной и той же ошибки в прогнозах люди скорее перестают доверять алгоритму, чем человеку». В том же году три исследователя из Пенсильванского университета ввели термин, описывающий склонность людей доверять себе подобным больше, чем машинам, — «неприятие алгоритмов»[131].
В сфере финансового трейдинга сформировалась, пожалуй, одна из самых прогрессивных бизнес-культур работы с алгоритмами. Тем не менее даже среди трейдеров неприятие алгоритмов остается самым сильным сдерживающим фактором. В 2015 году Леда Брага создала компанию по управлению инвестициями Systematica, которая занимается исключительно алгоритмическим трейдингом. Брага признает, что люди по-прежнему выполняют определенные функции в трейдинге (например, работа активных трейдеров и трейдеров, продающих ценные бумаги без покрытия, основана на тщательном изучении основных показателей эффективности компаний и их руководства), однако эти функции постепенно сходят на нет. Брага убеждена в том, что будущее финансового трейдинга за автоматизацией. Между тем подход, которого придерживается Systematica, встречает сопротивление: люди склонны отдавать предпочтение тем решениям, которые принимают люди. «Неприятие алгоритмов — серьезное препятствие», — говорит Брага. Она признает: во многих областях «все мы предпочитаем, чтобы ту или иную работу выполнял для нас человек, даже если он делает эту работу хуже… Мы должны мыслить более рационально»[132].
Безусловно, дозированное неприятие приносит пользу. Наши собственные исследования, так же как и исследования Pew Center, говорят о том, что руководители должны поддерживать разумное равновесие между скептицизмом и принятием глубоких перемен, обусловленных внедрением искусственного интеллекта[133]. Однако следует обратить внимание на такие положительные моменты, как возможность более полного сбора данных, что позволит банкам принимать более объективные решения по кредитам, тогда как в прошлом предвзятость банкиров лишала многих людей возможности получить кредит из-за расовой принадлежности, пола или места жительства. В медицинских учреждениях также видят, что искусственный интеллект помогает оптимизировать расходы, сокращая или увеличивая число определенных задач (действий), которые врачи просто не могут выполнить для такого количества пациентов, как бы они этого ни хотели.
Разумеется, мы до сих пор пытаемся определить, что искусственный интеллект может и чего не может делать, а также как лучше всего внедрить его в бизнес-процессы. Именно поэтому нецелесообразно слепо доверять всем системам искусственного интеллекта в равной мере. Взвешенные суждения людей остаются важнейшей составляющей процесса внедрения искусственного интеллекта.
Однако самые разные системы искусственного интеллекта, от программных ботов до многошарнирных роботов-манипуляторов, получили в компаниях такое широкое применение, что это меняет рабочие обязанности и преображает организационную структуру. Так как же сформировать культуру доверия, распространяющуюся даже на роботов-коллег? Один из способов — протестировать систему искусственного интеллекта внутри компании и обучить сотрудников работе с ней, как показано в разделе «Экспериментируйте». На следующем этапе, когда решение готово к полномасштабному внедрению, можно использовать также некоторые из представленных ниже базовых инструментов и методов, чтобы укрепить доверие людей к новой технологии и помочь им мыслить более рационально.