Шрифт:
Интервал:
Закладка:
Не обойтись без повторения: длины этих волн, или частоты колебаний, рассказывали об энергии каждого кванта. А впадины и горбы, или амплитуды электромагнитных волн? О чем рассказывали они, если от них зависела яркость — интенсивность — света? Ответ был прост и логичен: там, где яркость больше, там больше квантов — там их плотность выше. Об этом и говорит высота — амплитуда — электромагнитных волн.
Совершенно тот же вопрос волновал теперь Макса Борна: о чем ведут рассказ пси–волны с их впадинами и горбами, раз уж с этими волнами связано поведение частиц? Пришедшая на память мысль Эйнштейна подсказала ответ. И Макс Борн потом не раз с благодарностью вспоминал об этом.
Кажется, дело вполне заурядное — каждый теоретик держит в памяти то, что было сделано на ту же тему до него. Да, но надо было понять, что мысль Эйнштейна отражала ту же тему. А это не лежало на поверхности. Совсем напротив. Ведь ничего не получалось из стремления Шредингера увидеть в частицах некие кванты, сотканные из его пси–волн. Никаких «псионов» — в параллель с фотонами — не могло существовать. И потому в мысли Эйнштейна о роли горбов и впадин электромагнитной волны еще надо было усмотреть полезную подсказку для совсем другого по своей природе случая. А угадав эту подсказку, следовать ей без опрометчивости, дабы получить свой ответ на очень похожий вопрос.
Простейшим выглядел такой ответ: там, где поднимается гребень пси–волны, там и находится в данный момент частица. Но работала Эйнштейнова подсказка: а почему обязательно там и только там; разве в тех местах, где проходит не горб, а скат электромагнитной волны, совсем нет света? В таких местах его яркость меньше, однако же фотоны есть и там. Их меньше, но они есть. Отчего же не предположить, что и на скате пси–волны можно застать электрон? (Или, разумеется, любую другую микрочастицу, чье поведение изучается на сей раз .)
Появляется даже искушение подумать так: на гребнях пси–волны самой плоти электрона больше, а на скатах — меньше. Она, эта плоть, распределена — размазана — по всему пространству, где проходит пси–волна, описывающая поведение электрона: где горб — погуще, где скат — пожиже. Но тогда исчезает электрон как частица!
Недаром такому соблазну поддался все тот же Шредингер: идею волновых пакетов он заставлял служить подобной картине расплывшегося по всему атому электрона. «В этом я не мог ему следовать», — говорил Макс Борн.
Он следовал Эйнштейну, а Эйнштейн не размазывал световой квант по всей электромагнитной волне, ибо тогда незачем было бы и разговаривать о частицах света.
Нет, электрон как целое можно застать и там, где у пси–волны гребень, и там, где у нее скат. А «больше» и «меньше» относятся не к корпускулярной плоти электрона, а к его поведению: где у пси–волны амплитуда выше, там больше шансов быть электрону, а где амплитуда ниже, там и шансов меньше. Эти шансы равны нулю лишь там, где пси–волна сходит на нет: вот там электрону не бывать — там вероятность застать его нулевая.
Шредингеровские пси–волны — это волны вероятности!
Они, бесплотные, ведут рассказ о неклассическом движении микрокентавров. Они как бы становятся на место строго определенных классических траекторий. Вот это–то теоретически обосновал летом 1926 года Макс Борн.
4
Для нашей хорошей истории то было событием важности первостепенной. Но замечательно, что на многих физиков оно не произвело тогда почти никакого впечатления. Особенно на копенгагенцев из окружения Нильса Бора.
Там давно держались убеждения, что глубины материи — это мир вероятностных закономерностей. Сам глава копенгагенцев лелеял это убеждение со времен создания квантовой модели атома — с 1913 года.
У электрона в водородном атоме была возможность совершать любые из допустимых перескоков по ступеням энергетической лестницы. Спектральные линии своими сериями, вроде серии Бальмера, показывали, что совершаются все варианты разрешенных квантовых скачков. Излучают одновременно мириады атомов, но каждый испускает лишь какой–нибудь один из возможных квантов. И если одна линия в спектре ярче, а другая тусклее, то это означает, что больше атомов излучают первый квант и меньше второй. Иными словами, первый вариант квантового скачка вероятней второго. Яркость спектральных линий прямо свидетельствует о разной вероятности разных вариантов. А спектроскоп в лаборатории работает, как статистическое бюро: сортирует все варианты и молча, но зримо докладывает физику о статистической частоте разных случаев.
Словом, для Нильса Бора и его учеников не содержалось ничего неожиданного в идее Макса Борна. В другом ключе они думали о том же.
Таким — вполне очевидным! — показалось вероятностное истолкование пси–волн даже восемнадцатилетнему Льву Ландау. Тогда, в 26–м, вдали от Копенгагена и Геттингена, он самостоятельно делал свою первую научную работу по волновой механике. Потом, вспоминая минувшее и тот свой первый шаг в большую науку, он говорил (в том числе и автору этих строк), что Макс Борн, в сущности, не нашел ничего нового: «Так думали все».
В этом обобщении была, конечно, доля преувеличения.
Так не думали, скажем, ни Шредингер, ни де Бройль, равно как и многие другие из тех, кого волновала не только «техника квантов», но и «философия квантов». И однако же поверим свидетельству Ландау — с ним заодно немало ветеранов, утверждавших то же самое: понимание квантовых законов как вероятностных законов Случая носилось в воздухе.
Словно бы не желая переоценивать собственных заслуг, Макс Борн и тот уверял, что оно «казалось почти само собой разумеющимся». Но неспроста он вставил тут словечко «почти».
Еще не окончился 26–й год, а Макс Борн получил очень его огорчившее коротенькое письмо. Это Эйнштейн откликался на вероятностное толкование законов новой механики. И как удивителен был его отклик…
Он не прибегал к физическим аргументам, а ссылался только на свое философское чувство природы, веря в его безошибочность:
«Квантовая механика внушает большое уважение. Но внутренний голос говорит мне, что это все же не то».
Он употребил насмешливую немецкую идиому — «это не настоящий Иаков». И продолжал:
«Эта теория многое дает, но к тайне Старика она едва ли нас приближает. Во всяком случае, я убежден, что Он не бросает кости».
И это означало, что по его мнению природа на самом деле не отводит никакой роли случайному выбору возможностей.
Внутренний голос Эйнштейна. Без формул…