Шрифт:
Интервал:
Закладка:
На потолке Сикстинской капеллы Бог протягивает к Адаму руку, и Его нервные окончания источают молекулы, которые — благодаря хитроумному механизму, открывающему натриевые каналы Адама, — заставляют нервы первого человека встрепенуться от приливающего в них электричества.
Вот так сигналы и пересекают зазоры между нервными клетками. Электрические сигналы подходят по одной из нервных клеток к такому зазору и заставляют ее выделить ту самую могущественную жидкость, затем жидкость пересекает зазор и проникает в следующую нервную клетку, перенося в нее посланное первой клеткой сообщение.
Однако, если бы каждая наша нервная клетка выделяла только обнаруженную Леви замедляющую жидкость, мы столкнулись бы с большими неприятностями. Стоило бы нам что-то подумать или попытаться пошевелить рукой, как все начало бы замедляться, замедляяяться и замедляяяяяяяться. По счастью, в нашем теле имеются и другие жидкости-трансмиттеры. Одни ускоряют работу клеток, в которые попадают, другие просто помогают им образовывать новые соединения, — к настоящему времени таких трансмиттеров обнаружено уже несколько десятков. (Один из них, также осмысленный не без помощи Леви, был поначалу назван: Acceleransstuff — за то, что он ускорял работу клетки, в которую попадал. Теперь мы называем его адреналином.)
Каждая из нейротрансмиттерных подводных лодок обладает своей, особой формой и, отыскав пригодное для нее место стоянки, словно бы буксируется к нему. А буксиром служит то самое статическое электричество, которое в сухую погоду порой награждает нас электрическим ударом. Некоторые области трансмиттерной молекулы содержат дополнительный отрицательный заряд (поскольку там концентрируются электроны), между тем как соответствующие области целевой нервной клетки содержат избыток зарядов положительных (по причине относительного недобора электронов). Когда две эти области сближаются, все выглядит так, точно палубные матросы начинают тянуть на себя причальные концы. Две области соединяются.
Впрочем, если бы на этом все и заканчивалось, мы опять-таки столкнулись бы с неприятностями. Дело в том, что с приходом нейротрансмиттера принявшая его нервная клетка получает возможность начать пересылку сигнала, включая для этого свои натриевые насосы. Однако, если бы трансмиттер так и застрял в ней, она продолжала бы сигналить безостановочно. Сигнал, пришедший из прошлого, все повторялся бы и повторялся. И ни получить от внешнего мира новое ощущение, ни создать новую мысль вам уже не удалось бы. Бы оказались бы навсегда застрявшим в одном-единственном остановившемся мгновении.
По счастью, в зазоре между нервными клетками нашего мозга, да и во всех прочих участках тела существуют и другие молекулы — молекулы, исполняющие роль бригады демонтажников: они разваливают нейротрансмиттеры на части почти сразу после их появления. А затем, в весьма удобном для нас приступе экологической распорядительности, доставляют эти части в клетку, из которой поступил нейротрансмиттер, а там его собирают из этих частей заново и — память о прошлом путешествии из него стирается начисто — доставляют к поверхности клетки в состоянии полной готовности к новому путешествию. И весь этот процесс обеспечивается электрическими силами. Без них ничего подобного бы не происходило.
Работа Леви помогла разрешить множество загадок. Мы веками потребляем кофеин, и уже в 1600-х находились люди, которые жаловались на то, что молодые студенты чрезмерно налегают на кофе, дабы сохранять бодрость, когда им приходится перед экзаменами наверстывать упущенное. Однако как работает кофеин, никто не знал. Положение изменилось, когда возникло понимание электрических соединений на уровне поверхности клеток мозга. Один из трансмиттеров, обслуживающий клетки мозга, — вещество, именуемого аденозином. Достигая целевой клетки мозга, молекула аденозина уменьшает частоту, с которой клетка подает сигналы. Кофеин же проделывает следующее: он просто занимает места стоянок этих молекул. В результате причалить к клетке аденозину не удается. Мы можем быть совершенно измотанными, можем жаждать отдыха, но, если принимающие клетки нашего мозга спрыснуты кофеином, отчаянно извергаемые другими клетками молекулы аденозина не находят достаточного числа причальных мест, а стало быть, у них нет никакой возможности замедлить работу принимающих клеток.
За годы, прошедшие после сделанного Леви открытия, стали понятными детали все более тонкие. Некая американка по имени Нэнси Островски одно время намеревалась стать монахиней, но в 1970-х вдруг занялась научными исследованиями. Похоже, впрочем, что она перенесла некоторые нравственные законы своей прежней жизни на новую работу. В располагавшейся неподалеку от Вашингтона, округ Колумбия, лаборатории Нэнси, соорудив нечто вроде маленькой гильотины, заставляла мышей совокупляться прямо под ней, а затем обезглавливала их, еще сопряженных. И когда ей удавалось достаточно быстро препарировать мозг этих мышей, выяснялось, что клетки их мозга выделяют эндорфины. Эти природные нейротрансмиттеры схожи по форме с героином и морфием. Когда они пересекают синаптические бреши и встречаются с клетками-приемниками, млекопитающее испытывает острое наслаждение.
Сами эндорфины неустойчивы, а вот создаваемое ими общее настроение оказывается более долговечным. Одни люди похожи на Берти Вустера, персонажа П. Г. Вудхауза, неизменно бодрого и веселого. Другие, напротив, с большим удовольствием свернули бы шею каждому, кто лезет к ним с рекомендациями глядеть веселее. Чем более точным является наше знание о том, как движутся внутри мозга электрически заряженные молекулы и ионы, тем с большей легкостью мы можем вмешиваться в эти процессы и управлять нашими настроениями, а до некоторой степени и темпераментами.
Вот это и есть наиновейшее из достижений по части использования электричества в новых технологиях. Для того чтобы стали ясными последствия появления телеграфа и компьютера, потребовались десятилетия; а как повлияет на будущее открытие нейротрансмиттеров, нам еще только предстоит узнать. Серьезный шаг вперед в использовании трансмиттеров был сделан в 1970-х в Индианаполисе, в лабораториях фармацевтической компании Eli Lilly. Многие ученые уже знали, что нейротрансмиттер, именуемый серотонином, играет важную роль в формировании наших настроений. Тут присутствует много разных тонкостей, однако, если говорить грубо, люди, в мозгу которых недостает серотонина, склонны к депрессиям. Но как его контролировать? Введение в мозг сильнодействующего химического вещества, такого, скажем, как торазин, повышает настроение, однако торазин, увы, обладает прицельной точностью огнемета и бьет по многим другим полезным каналам мозга. В результате при использовании одного только торазина психиатрические лечебницы получали возможность освобождать своих пациентов из смирительных рубашек, но лишь потому, что об этих пациентах можно было с уверенностью сказать: они будут безучастно просиживать целые дни в шезлонгах, поскольку утратили в процессе лечения свою индивидуальность.
Исследователи же, работавшие в Eli Lilly, отыскали изобретательный, не лобовой способ повышения уровня серотонина. Они не смогли добиться того, чтобы серотонина становилось больше, зато смогли заставить ту его малость, какая уже имеется, действовать дольше. Ибо уровень серотонина определяется не только тем, какое его количество выделяют сигнализирующие нервные клетки мозга, но и тем, насколько быстро бригада демонтажников — молекул-уборщиц — пересекает зазоры между нервными клетками, чтобы разобрать серотонин на части и отволочь их назад, в передавшую сигнал клетку, дабы его там собрали заново. Если мозг человека не производит достаточно серотонина или клетки-приемщицы его работают не очень исправно, почему бы не замедлить процессы демонтажа и последующей сборки? Прозак выделяет маленькие, насыщенные электричеством молекулы, которые преграждают путь молекулам, активно участвующим в процессе демонтажа, мешая им работать в полную силу. Результат? Поскольку демонтирующие молекулы приходят в неисправность, небольшие количества естественным образом создаваемого серотонина разрушаются не так быстро, как прежде. Уровень его остается постоянным, а то и повышается.